Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Fox Thomson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Fox Thomson, Markus Himmel | |
-/ | |
import data.nat.bitwise | |
import set_theory.game.birthday | |
import set_theory.game.impartial | |
/-! | |
# Nim and the Sprague-Grundy theorem | |
This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players | |
may move to `nim o₂` for any `o₂ < o₁`. | |
We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that | |
`G` is equivalent to `nim (grundy_value G)`. | |
Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, | |
where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. | |
## Implementation details | |
The pen-and-paper definition of nim defines the possible moves of `nim o` to be `set.Iio o`. | |
However, this definition does not work for us because it would make the type of nim | |
`ordinal.{u} → pgame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy | |
theorem, since that requires the type of `nim` to be `ordinal.{u} → pgame.{u}`. For this reason, we | |
instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and | |
`to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and | |
vice versa. | |
-/ | |
noncomputable theory | |
universe u | |
open_locale pgame | |
namespace pgame | |
/-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can | |
take a positive number of stones from it on their turn. -/ | |
-- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error | |
noncomputable! def nim : ordinal.{u} → pgame.{u} | |
| o₁ := | |
let f := λ o₂, | |
have ordinal.typein o₁.out.r o₂ < o₁ := ordinal.typein_lt_self o₂, | |
nim (ordinal.typein o₁.out.r o₂) | |
in ⟨o₁.out.α, o₁.out.α, f, f⟩ | |
using_well_founded { dec_tac := tactic.assumption } | |
open ordinal | |
lemma nim_def (o : ordinal) : nim o = pgame.mk o.out.α o.out.α | |
(λ o₂, nim (ordinal.typein (<) o₂)) | |
(λ o₂, nim (ordinal.typein (<) o₂)) := | |
by { rw nim, refl } | |
lemma left_moves_nim (o : ordinal) : (nim o).left_moves = o.out.α := | |
by { rw nim_def, refl } | |
lemma right_moves_nim (o : ordinal) : (nim o).right_moves = o.out.α := | |
by { rw nim_def, refl } | |
lemma move_left_nim_heq (o : ordinal) : (nim o).move_left == λ i : o.out.α, nim (typein (<) i) := | |
by { rw nim_def, refl } | |
lemma move_right_nim_heq (o : ordinal) : (nim o).move_right == λ i : o.out.α, nim (typein (<) i) := | |
by { rw nim_def, refl } | |
/-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ | |
noncomputable def to_left_moves_nim {o : ordinal} : set.Iio o ≃ (nim o).left_moves := | |
(enum_iso_out o).to_equiv.trans (equiv.cast (left_moves_nim o).symm) | |
/-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ | |
noncomputable def to_right_moves_nim {o : ordinal} : set.Iio o ≃ (nim o).right_moves := | |
(enum_iso_out o).to_equiv.trans (equiv.cast (right_moves_nim o).symm) | |
@[simp] theorem to_left_moves_nim_symm_lt {o : ordinal} (i : (nim o).left_moves) : | |
↑(to_left_moves_nim.symm i) < o := | |
(to_left_moves_nim.symm i).prop | |
@[simp] theorem to_right_moves_nim_symm_lt {o : ordinal} (i : (nim o).right_moves) : | |
↑(to_right_moves_nim.symm i) < o := | |
(to_right_moves_nim.symm i).prop | |
@[simp] lemma move_left_nim' {o : ordinal.{u}} (i) : | |
(nim o).move_left i = nim (to_left_moves_nim.symm i).val := | |
(congr_heq (move_left_nim_heq o).symm (cast_heq _ i)).symm | |
lemma move_left_nim {o : ordinal} (i) : | |
(nim o).move_left (to_left_moves_nim i) = nim i := | |
by simp | |
@[simp] lemma move_right_nim' {o : ordinal} (i) : | |
(nim o).move_right i = nim (to_right_moves_nim.symm i).val := | |
(congr_heq (move_right_nim_heq o).symm (cast_heq _ i)).symm | |
lemma move_right_nim {o : ordinal} (i) : | |
(nim o).move_right (to_right_moves_nim i) = nim i := | |
by simp | |
instance is_empty_nim_zero_left_moves : is_empty (nim 0).left_moves := | |
by { rw nim_def, exact ordinal.is_empty_out_zero } | |
instance is_empty_nim_zero_right_moves : is_empty (nim 0).right_moves := | |
by { rw nim_def, exact ordinal.is_empty_out_zero } | |
/-- `nim 0` has exactly the same moves as `0`. -/ | |
def nim_zero_relabelling : nim 0 ≡r 0 := relabelling.is_empty _ | |
theorem nim_zero_equiv : nim 0 ≈ 0 := equiv.is_empty _ | |
noncomputable instance unique_nim_one_left_moves : unique (nim 1).left_moves := | |
(equiv.cast $ left_moves_nim 1).unique | |
noncomputable instance unique_nim_one_right_moves : unique (nim 1).right_moves := | |
(equiv.cast $ right_moves_nim 1).unique | |
@[simp] theorem default_nim_one_left_moves_eq : | |
(default : (nim 1).left_moves) = @to_left_moves_nim 1 ⟨0, ordinal.zero_lt_one⟩ := | |
rfl | |
@[simp] theorem default_nim_one_right_moves_eq : | |
(default : (nim 1).right_moves) = @to_right_moves_nim 1 ⟨0, ordinal.zero_lt_one⟩ := | |
rfl | |
@[simp] theorem to_left_moves_nim_one_symm (i) : | |
(@to_left_moves_nim 1).symm i = ⟨0, ordinal.zero_lt_one⟩ := | |
by simp | |
@[simp] theorem to_right_moves_nim_one_symm (i) : | |
(@to_right_moves_nim 1).symm i = ⟨0, ordinal.zero_lt_one⟩ := | |
by simp | |
theorem nim_one_move_left (x) : (nim 1).move_left x = nim 0 := | |
by simp | |
theorem nim_one_move_right (x) : (nim 1).move_right x = nim 0 := | |
by simp | |
/-- `nim 1` has exactly the same moves as `star`. -/ | |
def nim_one_relabelling : nim 1 ≡r star := | |
begin | |
rw nim_def, | |
refine ⟨_, _, λ i, _, λ j, _⟩, | |
any_goals { dsimp, apply equiv.equiv_of_unique }, | |
all_goals { simp, exact nim_zero_relabelling } | |
end | |
theorem nim_one_equiv : nim 1 ≈ star := nim_one_relabelling.equiv | |
@[simp] lemma nim_birthday (o : ordinal) : (nim o).birthday = o := | |
begin | |
induction o using ordinal.induction with o IH, | |
rw [nim_def, birthday_def], | |
dsimp, | |
rw max_eq_right le_rfl, | |
convert lsub_typein o, | |
exact funext (λ i, IH _ (typein_lt_self i)) | |
end | |
@[simp] lemma neg_nim (o : ordinal) : -nim o = nim o := | |
begin | |
induction o using ordinal.induction with o IH, | |
rw nim_def, dsimp; congr; | |
funext i; | |
exact IH _ (ordinal.typein_lt_self i) | |
end | |
instance nim_impartial (o : ordinal) : impartial (nim o) := | |
begin | |
induction o using ordinal.induction with o IH, | |
rw [impartial_def, neg_nim], | |
refine ⟨equiv_rfl, λ i, _, λ i, _⟩; | |
simpa using IH _ (typein_lt_self _) | |
end | |
lemma exists_ordinal_move_left_eq {o : ordinal} (i) : ∃ o' < o, (nim o).move_left i = nim o' := | |
⟨_, typein_lt_self _, move_left_nim' i⟩ | |
lemma exists_move_left_eq {o o' : ordinal} (h : o' < o) : ∃ i, (nim o).move_left i = nim o' := | |
⟨to_left_moves_nim ⟨o', h⟩, by simp⟩ | |
lemma nim_fuzzy_zero_of_ne_zero {o : ordinal} (ho : o ≠ 0) : nim o ∥ 0 := | |
begin | |
rw [impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le], | |
rw ←ordinal.pos_iff_ne_zero at ho, | |
exact ⟨(ordinal.principal_seg_out ho).top, by simp⟩ | |
end | |
@[simp] lemma nim_add_equiv_zero_iff (o₁ o₂ : ordinal) : nim o₁ + nim o₂ ≈ 0 ↔ o₁ = o₂ := | |
begin | |
split, | |
{ contrapose, | |
intro h, | |
rw [impartial.not_equiv_zero_iff], | |
wlog h' : o₁ ≤ o₂ using [o₁ o₂, o₂ o₁], | |
{ exact le_total o₁ o₂ }, | |
{ have h : o₁ < o₂ := lt_of_le_of_ne h' h, | |
rw [impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂], | |
refine ⟨to_left_moves_add (sum.inr _), _⟩, | |
{ exact (ordinal.principal_seg_out h).top }, | |
{ simpa using (impartial.add_self (nim o₁)).2 } }, | |
{ exact (fuzzy_congr_left add_comm_equiv).1 (this (ne.symm h)) } }, | |
{ rintro rfl, | |
exact impartial.add_self (nim o₁) } | |
end | |
@[simp] lemma nim_add_fuzzy_zero_iff {o₁ o₂ : ordinal} : nim o₁ + nim o₂ ∥ 0 ↔ o₁ ≠ o₂ := | |
by rw [iff_not_comm, impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] | |
@[simp] lemma nim_equiv_iff_eq {o₁ o₂ : ordinal} : nim o₁ ≈ nim o₂ ↔ o₁ = o₂ := | |
by rw [impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] | |
/-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the | |
game is equivalent to -/ | |
noncomputable def grundy_value : Π (G : pgame.{u}), ordinal.{u} | |
| G := ordinal.mex.{u u} (λ i, grundy_value (G.move_left i)) | |
using_well_founded { dec_tac := pgame_wf_tac } | |
lemma grundy_value_eq_mex_left (G : pgame) : | |
grundy_value G = ordinal.mex.{u u} (λ i, grundy_value (G.move_left i)) := | |
by rw grundy_value | |
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of | |
nim, namely the game of nim corresponding to the games Grundy value -/ | |
theorem equiv_nim_grundy_value : ∀ (G : pgame.{u}) [G.impartial], G ≈ nim (grundy_value G) | |
| G := | |
begin | |
introI hG, | |
rw [impartial.equiv_iff_add_equiv_zero, ←impartial.forall_left_moves_fuzzy_iff_equiv_zero], | |
intro i, | |
apply left_moves_add_cases i, | |
{ intro i₁, | |
rw add_move_left_inl, | |
apply (fuzzy_congr_left (add_congr_left (equiv_nim_grundy_value (G.move_left i₁)).symm)).1, | |
rw nim_add_fuzzy_zero_iff, | |
intro heq, | |
rw [eq_comm, grundy_value_eq_mex_left G] at heq, | |
have h := ordinal.ne_mex _, | |
rw heq at h, | |
exact (h i₁).irrefl }, | |
{ intro i₂, | |
rw [add_move_left_inr, ←impartial.exists_left_move_equiv_iff_fuzzy_zero], | |
revert i₂, | |
rw nim_def, | |
intro i₂, | |
have h' : ∃ i : G.left_moves, (grundy_value (G.move_left i)) = | |
ordinal.typein (quotient.out (grundy_value G)).r i₂, | |
{ revert i₂, | |
rw grundy_value_eq_mex_left, | |
intros i₂, | |
have hnotin : _ ∉ _ := λ hin, (le_not_le_of_lt (ordinal.typein_lt_self i₂)).2 (cInf_le' hin), | |
simpa using hnotin}, | |
cases h' with i hi, | |
use to_left_moves_add (sum.inl i), | |
rw [add_move_left_inl, move_left_mk], | |
apply (add_congr_left (equiv_nim_grundy_value (G.move_left i))).trans, | |
simpa only [hi] using impartial.add_self (nim (grundy_value (G.move_left i))) } | |
end | |
using_well_founded { dec_tac := pgame_wf_tac } | |
lemma grundy_value_eq_iff_equiv_nim {G : pgame} [G.impartial] {o : ordinal} : | |
grundy_value G = o ↔ G ≈ nim o := | |
⟨by { rintro rfl, exact equiv_nim_grundy_value G }, | |
by { intro h, rw ←nim_equiv_iff_eq, exact (equiv_nim_grundy_value G).symm.trans h }⟩ | |
@[simp] lemma nim_grundy_value (o : ordinal.{u}) : grundy_value (nim o) = o := | |
grundy_value_eq_iff_equiv_nim.2 pgame.equiv_rfl | |
lemma grundy_value_eq_iff_equiv (G H : pgame) [G.impartial] [H.impartial] : | |
grundy_value G = grundy_value H ↔ G ≈ H := | |
grundy_value_eq_iff_equiv_nim.trans (equiv_congr_left.1 (equiv_nim_grundy_value H) _).symm | |
@[simp] lemma grundy_value_zero : grundy_value 0 = 0 := | |
grundy_value_eq_iff_equiv_nim.2 nim_zero_equiv.symm | |
lemma grundy_value_iff_equiv_zero (G : pgame) [G.impartial] : grundy_value G = 0 ↔ G ≈ 0 := | |
by rw [←grundy_value_eq_iff_equiv, grundy_value_zero] | |
@[simp] lemma grundy_value_star : grundy_value star = 1 := | |
grundy_value_eq_iff_equiv_nim.2 nim_one_equiv.symm | |
@[simp] lemma grundy_value_neg (G : pgame) [G.impartial] : grundy_value (-G) = grundy_value G := | |
by rw [grundy_value_eq_iff_equiv_nim, neg_equiv_iff, neg_nim, ←grundy_value_eq_iff_equiv_nim] | |
lemma grundy_value_eq_mex_right : ∀ (G : pgame) [G.impartial], | |
grundy_value G = ordinal.mex.{u u} (λ i, grundy_value (G.move_right i)) | |
| ⟨l, r, L, R⟩ := begin | |
introI H, | |
rw [←grundy_value_neg, grundy_value_eq_mex_left], | |
congr, | |
ext i, | |
haveI : (R i).impartial := @impartial.move_right_impartial ⟨l, r, L, R⟩ _ i, | |
apply grundy_value_neg | |
end | |
@[simp] lemma grundy_value_nim_add_nim (n m : ℕ) : | |
grundy_value (nim.{u} n + nim.{u} m) = nat.lxor n m := | |
begin | |
induction n using nat.strong_induction_on with n hn generalizing m, | |
induction m using nat.strong_induction_on with m hm, | |
rw [grundy_value_eq_mex_left], | |
-- We want to show that `n xor m` is the smallest unreachable Grundy value. We will do this in two | |
-- steps: | |
-- h₀: `n xor m` is not a reachable grundy number. | |
-- h₁: every Grundy number strictly smaller than `n xor m` is reachable. | |
have h₀ : ∀ i, grundy_value ((nim n + nim m).move_left i) ≠ (nat.lxor n m : ordinal), | |
{ -- To show that `n xor m` is unreachable, we show that every move produces a Grundy number | |
-- different from `n xor m`. | |
intro i, | |
-- The move operates either on the left pile or on the right pile. | |
apply left_moves_add_cases i, | |
all_goals | |
{ -- One of the piles is reduced to `k` stones, with `k < n` or `k < m`. | |
intro a, | |
obtain ⟨ok, hk, hk'⟩ := exists_ordinal_move_left_eq a, | |
obtain ⟨k, rfl⟩ := ordinal.lt_omega.1 (lt_trans hk (ordinal.nat_lt_omega _)), | |
replace hk := ordinal.nat_cast_lt.1 hk, | |
-- Thus, the problem is reduced to computing the Grundy value of `nim n + nim k` or | |
-- `nim k + nim m`, both of which can be dealt with using an inductive hypothesis. | |
simp only [hk', add_move_left_inl, add_move_left_inr, id], | |
rw hn _ hk <|> rw hm _ hk, | |
-- But of course xor is injective, so if we change one of the arguments, we will not get the | |
-- same value again. | |
intro h, | |
rw ordinal.nat_cast_inj at h, | |
try { rw [nat.lxor_comm n k, nat.lxor_comm n m] at h }, | |
exact hk.ne (nat.lxor_left_injective h) } }, | |
have h₁ : ∀ (u : ordinal), u < nat.lxor n m → | |
u ∈ set.range (λ i, grundy_value ((nim n + nim m).move_left i)), | |
{ -- Take any natural number `u` less than `n xor m`. | |
intros ou hu, | |
obtain ⟨u, rfl⟩ := ordinal.lt_omega.1 (lt_trans hu (ordinal.nat_lt_omega _)), | |
replace hu := ordinal.nat_cast_lt.1 hu, | |
-- Our goal is to produce a move that gives the Grundy value `u`. | |
rw set.mem_range, | |
-- By a lemma about xor, either `u xor m < n` or `u xor n < m`. | |
cases nat.lt_lxor_cases hu with h h, | |
-- Therefore, we can play the corresponding move, and by the inductive hypothesis the new state | |
-- is `(u xor m) xor m = u` or `n xor (u xor n) = u` as required. | |
{ obtain ⟨i, hi⟩ := exists_move_left_eq (ordinal.nat_cast_lt.2 h), | |
refine ⟨to_left_moves_add (sum.inl i), _⟩, | |
simp only [hi, add_move_left_inl], | |
rw [hn _ h, nat.lxor_assoc, nat.lxor_self, nat.lxor_zero] }, | |
{ obtain ⟨i, hi⟩ := exists_move_left_eq (ordinal.nat_cast_lt.2 h), | |
refine ⟨to_left_moves_add (sum.inr i), _⟩, | |
simp only [hi, add_move_left_inr], | |
rw [hm _ h, nat.lxor_comm, nat.lxor_assoc, nat.lxor_self, nat.lxor_zero] } }, | |
-- We are done! | |
apply (ordinal.mex_le_of_ne.{u u} h₀).antisymm, | |
contrapose! h₁, | |
exact ⟨_, ⟨h₁, ordinal.mex_not_mem_range _⟩⟩, | |
end | |
lemma nim_add_nim_equiv {n m : ℕ} : nim n + nim m ≈ nim (nat.lxor n m) := | |
by rw [←grundy_value_eq_iff_equiv_nim, grundy_value_nim_add_nim] | |
lemma grundy_value_add (G H : pgame) [G.impartial] [H.impartial] {n m : ℕ} (hG : grundy_value G = n) | |
(hH : grundy_value H = m) : grundy_value (G + H) = nat.lxor n m := | |
begin | |
rw [←nim_grundy_value (nat.lxor n m), grundy_value_eq_iff_equiv], | |
refine equiv.trans _ nim_add_nim_equiv, | |
convert add_congr (equiv_nim_grundy_value G) (equiv_nim_grundy_value H); | |
simp only [hG, hH] | |
end | |
end pgame | |