Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /mathlib /ring_theory /eisenstein_criterion.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.56 kB
/-
Copyright (c) 2020 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import ring_theory.prime
import ring_theory.polynomial.content
/-!
# Eisenstein's criterion
A proof of a slight generalisation of Eisenstein's criterion for the irreducibility of
a polynomial over an integral domain.
-/
open polynomial ideal.quotient
variables {R : Type*} [comm_ring R]
namespace polynomial
open_locale polynomial
namespace eisenstein_criterion_aux
/- Section for auxiliary lemmas used in the proof of `irreducible_of_eisenstein_criterion`-/
lemma map_eq_C_mul_X_pow_of_forall_coeff_mem {f : R[X]} {P : ideal R}
(hfP : βˆ€ (n : β„•), ↑n < f.degree β†’ f.coeff n ∈ P) :
map (mk P) f = C ((mk P) f.leading_coeff) * X ^ f.nat_degree :=
polynomial.ext (Ξ» n, begin
by_cases hf0 : f = 0, { simp [hf0], },
rcases lt_trichotomy ↑n (degree f) with h | h | h,
{ erw [coeff_map, eq_zero_iff_mem.2 (hfP n h), coeff_C_mul, coeff_X_pow, if_neg, mul_zero],
rintro rfl, exact not_lt_of_ge degree_le_nat_degree h },
{ have : nat_degree f = n, from nat_degree_eq_of_degree_eq_some h.symm,
rw [coeff_C_mul, coeff_X_pow, if_pos this.symm, mul_one, leading_coeff, this, coeff_map] },
{ rw [coeff_eq_zero_of_degree_lt, coeff_eq_zero_of_degree_lt],
{ refine lt_of_le_of_lt (degree_C_mul_X_pow_le _ _) _,
rwa ← degree_eq_nat_degree hf0 },
{ exact lt_of_le_of_lt (degree_map_le _ _) h } }
end)
lemma le_nat_degree_of_map_eq_mul_X_pow {n : β„•}
{P : ideal R} (hP : P.is_prime) {q : R[X]} {c : polynomial (R β§Έ P)}
(hq : map (mk P) q = c * X ^ n) (hc0 : c.degree = 0) : n ≀ q.nat_degree :=
with_bot.coe_le_coe.1
(calc ↑n = degree (q.map (mk P)) :
by rw [hq, degree_mul, hc0, zero_add, degree_pow, degree_X, nsmul_one, nat.cast_with_bot]
... ≀ degree q : degree_map_le _ _
... ≀ nat_degree q : degree_le_nat_degree)
lemma eval_zero_mem_ideal_of_eq_mul_X_pow {n : β„•} {P : ideal R}
{q : R[X]} {c : polynomial (R β§Έ P)}
(hq : map (mk P) q = c * X ^ n) (hn0 : 0 < n) : eval 0 q ∈ P :=
by rw [← coeff_zero_eq_eval_zero, ← eq_zero_iff_mem, ← coeff_map,
coeff_zero_eq_eval_zero, hq, eval_mul, eval_pow, eval_X, zero_pow hn0, mul_zero]
lemma is_unit_of_nat_degree_eq_zero_of_forall_dvd_is_unit {p q : R[X]}
(hu : βˆ€ (x : R), C x ∣ p * q β†’ is_unit x) (hpm : p.nat_degree = 0) :
is_unit p :=
begin
rw [eq_C_of_degree_le_zero (nat_degree_eq_zero_iff_degree_le_zero.1 hpm), is_unit_C],
refine hu _ _,
rw [← eq_C_of_degree_le_zero (nat_degree_eq_zero_iff_degree_le_zero.1 hpm)],
exact dvd_mul_right _ _
end
end eisenstein_criterion_aux
open eisenstein_criterion_aux
variables [is_domain R]
/-- If `f` is a non constant polynomial with coefficients in `R`, and `P` is a prime ideal in `R`,
then if every coefficient in `R` except the leading coefficient is in `P`, and
the trailing coefficient is not in `P^2` and no non units in `R` divide `f`, then `f` is
irreducible. -/
theorem irreducible_of_eisenstein_criterion {f : R[X]} {P : ideal R} (hP : P.is_prime)
(hfl : f.leading_coeff βˆ‰ P)
(hfP : βˆ€ n : β„•, ↑n < degree f β†’ f.coeff n ∈ P)
(hfd0 : 0 < degree f) (h0 : f.coeff 0 βˆ‰ P^2)
(hu : f.is_primitive) : irreducible f :=
have hf0 : f β‰  0, from Ξ» _, by simp only [*, not_true, submodule.zero_mem, coeff_zero] at *,
have hf : f.map (mk P) = C (mk P (leading_coeff f)) * X ^ nat_degree f,
from map_eq_C_mul_X_pow_of_forall_coeff_mem hfP,
have hfd0 : 0 < f.nat_degree, from with_bot.coe_lt_coe.1
(lt_of_lt_of_le hfd0 degree_le_nat_degree),
⟨mt degree_eq_zero_of_is_unit (λ h, by simp only [*, lt_irrefl] at *),
begin
rintros p q rfl,
rw [polynomial.map_mul] at hf,
rcases mul_eq_mul_prime_pow (show prime (X : polynomial (R β§Έ P)),
from monic_X.prime_of_degree_eq_one degree_X) hf with
⟨m, n, b, c, hmnd, hbc, hp, hq⟩,
have hmn : 0 < m β†’ 0 < n β†’ false,
{ assume hm0 hn0,
refine h0 _,
rw [coeff_zero_eq_eval_zero, eval_mul, sq],
exact ideal.mul_mem_mul
(eval_zero_mem_ideal_of_eq_mul_X_pow hp hm0)
(eval_zero_mem_ideal_of_eq_mul_X_pow hq hn0) },
have hpql0 : (mk P) (p * q).leading_coeff β‰  0,
{ rwa [ne.def, eq_zero_iff_mem] },
have hp0 : p β‰  0, from Ξ» h, by simp only [*, zero_mul, eq_self_iff_true, not_true, ne.def] at *,
have hq0 : q β‰  0, from Ξ» h, by simp only [*, eq_self_iff_true, not_true, ne.def, mul_zero] at *,
have hbc0 : degree b = 0 ∧ degree c = 0,
{ apply_fun degree at hbc,
rwa [degree_C hpql0, degree_mul, eq_comm, nat.with_bot.add_eq_zero_iff] at hbc },
have hmp : m ≀ nat_degree p,
from le_nat_degree_of_map_eq_mul_X_pow hP hp hbc0.1,
have hnq : n ≀ nat_degree q,
from le_nat_degree_of_map_eq_mul_X_pow hP hq hbc0.2,
have hpmqn : p.nat_degree = m ∧ q.nat_degree = n,
{ rw [nat_degree_mul hp0 hq0] at hmnd,
clear_except hmnd hmp hnq,
contrapose hmnd,
apply ne_of_lt,
rw not_and_distrib at hmnd,
cases hmnd,
{ exact add_lt_add_of_lt_of_le (lt_of_le_of_ne hmp (ne.symm hmnd)) hnq },
{ exact add_lt_add_of_le_of_lt hmp (lt_of_le_of_ne hnq (ne.symm hmnd)) } },
obtain rfl | rfl : m = 0 ∨ n = 0,
{ rwa [pos_iff_ne_zero, pos_iff_ne_zero, imp_false, not_not,
← or_iff_not_imp_left] at hmn },
{ exact or.inl (is_unit_of_nat_degree_eq_zero_of_forall_dvd_is_unit hu hpmqn.1) },
{ exact or.inr (is_unit_of_nat_degree_eq_zero_of_forall_dvd_is_unit
(by simpa only [mul_comm] using hu) hpmqn.2) }
end⟩
end polynomial