Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 5,557 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
/-
Copyright (c) 2020 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import ring_theory.prime
import ring_theory.polynomial.content
/-!
# Eisenstein's criterion
A proof of a slight generalisation of Eisenstein's criterion for the irreducibility of
a polynomial over an integral domain.
-/
open polynomial ideal.quotient
variables {R : Type*} [comm_ring R]
namespace polynomial
open_locale polynomial
namespace eisenstein_criterion_aux
/- Section for auxiliary lemmas used in the proof of `irreducible_of_eisenstein_criterion`-/
lemma map_eq_C_mul_X_pow_of_forall_coeff_mem {f : R[X]} {P : ideal R}
(hfP : β (n : β), βn < f.degree β f.coeff n β P) :
map (mk P) f = C ((mk P) f.leading_coeff) * X ^ f.nat_degree :=
polynomial.ext (Ξ» n, begin
by_cases hf0 : f = 0, { simp [hf0], },
rcases lt_trichotomy βn (degree f) with h | h | h,
{ erw [coeff_map, eq_zero_iff_mem.2 (hfP n h), coeff_C_mul, coeff_X_pow, if_neg, mul_zero],
rintro rfl, exact not_lt_of_ge degree_le_nat_degree h },
{ have : nat_degree f = n, from nat_degree_eq_of_degree_eq_some h.symm,
rw [coeff_C_mul, coeff_X_pow, if_pos this.symm, mul_one, leading_coeff, this, coeff_map] },
{ rw [coeff_eq_zero_of_degree_lt, coeff_eq_zero_of_degree_lt],
{ refine lt_of_le_of_lt (degree_C_mul_X_pow_le _ _) _,
rwa β degree_eq_nat_degree hf0 },
{ exact lt_of_le_of_lt (degree_map_le _ _) h } }
end)
lemma le_nat_degree_of_map_eq_mul_X_pow {n : β}
{P : ideal R} (hP : P.is_prime) {q : R[X]} {c : polynomial (R β§Έ P)}
(hq : map (mk P) q = c * X ^ n) (hc0 : c.degree = 0) : n β€ q.nat_degree :=
with_bot.coe_le_coe.1
(calc βn = degree (q.map (mk P)) :
by rw [hq, degree_mul, hc0, zero_add, degree_pow, degree_X, nsmul_one, nat.cast_with_bot]
... β€ degree q : degree_map_le _ _
... β€ nat_degree q : degree_le_nat_degree)
lemma eval_zero_mem_ideal_of_eq_mul_X_pow {n : β} {P : ideal R}
{q : R[X]} {c : polynomial (R β§Έ P)}
(hq : map (mk P) q = c * X ^ n) (hn0 : 0 < n) : eval 0 q β P :=
by rw [β coeff_zero_eq_eval_zero, β eq_zero_iff_mem, β coeff_map,
coeff_zero_eq_eval_zero, hq, eval_mul, eval_pow, eval_X, zero_pow hn0, mul_zero]
lemma is_unit_of_nat_degree_eq_zero_of_forall_dvd_is_unit {p q : R[X]}
(hu : β (x : R), C x β£ p * q β is_unit x) (hpm : p.nat_degree = 0) :
is_unit p :=
begin
rw [eq_C_of_degree_le_zero (nat_degree_eq_zero_iff_degree_le_zero.1 hpm), is_unit_C],
refine hu _ _,
rw [β eq_C_of_degree_le_zero (nat_degree_eq_zero_iff_degree_le_zero.1 hpm)],
exact dvd_mul_right _ _
end
end eisenstein_criterion_aux
open eisenstein_criterion_aux
variables [is_domain R]
/-- If `f` is a non constant polynomial with coefficients in `R`, and `P` is a prime ideal in `R`,
then if every coefficient in `R` except the leading coefficient is in `P`, and
the trailing coefficient is not in `P^2` and no non units in `R` divide `f`, then `f` is
irreducible. -/
theorem irreducible_of_eisenstein_criterion {f : R[X]} {P : ideal R} (hP : P.is_prime)
(hfl : f.leading_coeff β P)
(hfP : β n : β, βn < degree f β f.coeff n β P)
(hfd0 : 0 < degree f) (h0 : f.coeff 0 β P^2)
(hu : f.is_primitive) : irreducible f :=
have hf0 : f β 0, from Ξ» _, by simp only [*, not_true, submodule.zero_mem, coeff_zero] at *,
have hf : f.map (mk P) = C (mk P (leading_coeff f)) * X ^ nat_degree f,
from map_eq_C_mul_X_pow_of_forall_coeff_mem hfP,
have hfd0 : 0 < f.nat_degree, from with_bot.coe_lt_coe.1
(lt_of_lt_of_le hfd0 degree_le_nat_degree),
β¨mt degree_eq_zero_of_is_unit (Ξ» h, by simp only [*, lt_irrefl] at *),
begin
rintros p q rfl,
rw [polynomial.map_mul] at hf,
rcases mul_eq_mul_prime_pow (show prime (X : polynomial (R β§Έ P)),
from monic_X.prime_of_degree_eq_one degree_X) hf with
β¨m, n, b, c, hmnd, hbc, hp, hqβ©,
have hmn : 0 < m β 0 < n β false,
{ assume hm0 hn0,
refine h0 _,
rw [coeff_zero_eq_eval_zero, eval_mul, sq],
exact ideal.mul_mem_mul
(eval_zero_mem_ideal_of_eq_mul_X_pow hp hm0)
(eval_zero_mem_ideal_of_eq_mul_X_pow hq hn0) },
have hpql0 : (mk P) (p * q).leading_coeff β 0,
{ rwa [ne.def, eq_zero_iff_mem] },
have hp0 : p β 0, from Ξ» h, by simp only [*, zero_mul, eq_self_iff_true, not_true, ne.def] at *,
have hq0 : q β 0, from Ξ» h, by simp only [*, eq_self_iff_true, not_true, ne.def, mul_zero] at *,
have hbc0 : degree b = 0 β§ degree c = 0,
{ apply_fun degree at hbc,
rwa [degree_C hpql0, degree_mul, eq_comm, nat.with_bot.add_eq_zero_iff] at hbc },
have hmp : m β€ nat_degree p,
from le_nat_degree_of_map_eq_mul_X_pow hP hp hbc0.1,
have hnq : n β€ nat_degree q,
from le_nat_degree_of_map_eq_mul_X_pow hP hq hbc0.2,
have hpmqn : p.nat_degree = m β§ q.nat_degree = n,
{ rw [nat_degree_mul hp0 hq0] at hmnd,
clear_except hmnd hmp hnq,
contrapose hmnd,
apply ne_of_lt,
rw not_and_distrib at hmnd,
cases hmnd,
{ exact add_lt_add_of_lt_of_le (lt_of_le_of_ne hmp (ne.symm hmnd)) hnq },
{ exact add_lt_add_of_le_of_lt hmp (lt_of_le_of_ne hnq (ne.symm hmnd)) } },
obtain rfl | rfl : m = 0 β¨ n = 0,
{ rwa [pos_iff_ne_zero, pos_iff_ne_zero, imp_false, not_not,
β or_iff_not_imp_left] at hmn },
{ exact or.inl (is_unit_of_nat_degree_eq_zero_of_forall_dvd_is_unit hu hpmqn.1) },
{ exact or.inr (is_unit_of_nat_degree_eq_zero_of_forall_dvd_is_unit
(by simpa only [mul_comm] using hu) hpmqn.2) }
endβ©
end polynomial
|