/- Copyright (c) 2020 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes -/ import ring_theory.prime import ring_theory.polynomial.content /-! # Eisenstein's criterion A proof of a slight generalisation of Eisenstein's criterion for the irreducibility of a polynomial over an integral domain. -/ open polynomial ideal.quotient variables {R : Type*} [comm_ring R] namespace polynomial open_locale polynomial namespace eisenstein_criterion_aux /- Section for auxiliary lemmas used in the proof of `irreducible_of_eisenstein_criterion`-/ lemma map_eq_C_mul_X_pow_of_forall_coeff_mem {f : R[X]} {P : ideal R} (hfP : ∀ (n : ℕ), ↑n < f.degree → f.coeff n ∈ P) : map (mk P) f = C ((mk P) f.leading_coeff) * X ^ f.nat_degree := polynomial.ext (λ n, begin by_cases hf0 : f = 0, { simp [hf0], }, rcases lt_trichotomy ↑n (degree f) with h | h | h, { erw [coeff_map, eq_zero_iff_mem.2 (hfP n h), coeff_C_mul, coeff_X_pow, if_neg, mul_zero], rintro rfl, exact not_lt_of_ge degree_le_nat_degree h }, { have : nat_degree f = n, from nat_degree_eq_of_degree_eq_some h.symm, rw [coeff_C_mul, coeff_X_pow, if_pos this.symm, mul_one, leading_coeff, this, coeff_map] }, { rw [coeff_eq_zero_of_degree_lt, coeff_eq_zero_of_degree_lt], { refine lt_of_le_of_lt (degree_C_mul_X_pow_le _ _) _, rwa ← degree_eq_nat_degree hf0 }, { exact lt_of_le_of_lt (degree_map_le _ _) h } } end) lemma le_nat_degree_of_map_eq_mul_X_pow {n : ℕ} {P : ideal R} (hP : P.is_prime) {q : R[X]} {c : polynomial (R ⧸ P)} (hq : map (mk P) q = c * X ^ n) (hc0 : c.degree = 0) : n ≤ q.nat_degree := with_bot.coe_le_coe.1 (calc ↑n = degree (q.map (mk P)) : by rw [hq, degree_mul, hc0, zero_add, degree_pow, degree_X, nsmul_one, nat.cast_with_bot] ... ≤ degree q : degree_map_le _ _ ... ≤ nat_degree q : degree_le_nat_degree) lemma eval_zero_mem_ideal_of_eq_mul_X_pow {n : ℕ} {P : ideal R} {q : R[X]} {c : polynomial (R ⧸ P)} (hq : map (mk P) q = c * X ^ n) (hn0 : 0 < n) : eval 0 q ∈ P := by rw [← coeff_zero_eq_eval_zero, ← eq_zero_iff_mem, ← coeff_map, coeff_zero_eq_eval_zero, hq, eval_mul, eval_pow, eval_X, zero_pow hn0, mul_zero] lemma is_unit_of_nat_degree_eq_zero_of_forall_dvd_is_unit {p q : R[X]} (hu : ∀ (x : R), C x ∣ p * q → is_unit x) (hpm : p.nat_degree = 0) : is_unit p := begin rw [eq_C_of_degree_le_zero (nat_degree_eq_zero_iff_degree_le_zero.1 hpm), is_unit_C], refine hu _ _, rw [← eq_C_of_degree_le_zero (nat_degree_eq_zero_iff_degree_le_zero.1 hpm)], exact dvd_mul_right _ _ end end eisenstein_criterion_aux open eisenstein_criterion_aux variables [is_domain R] /-- If `f` is a non constant polynomial with coefficients in `R`, and `P` is a prime ideal in `R`, then if every coefficient in `R` except the leading coefficient is in `P`, and the trailing coefficient is not in `P^2` and no non units in `R` divide `f`, then `f` is irreducible. -/ theorem irreducible_of_eisenstein_criterion {f : R[X]} {P : ideal R} (hP : P.is_prime) (hfl : f.leading_coeff ∉ P) (hfP : ∀ n : ℕ, ↑n < degree f → f.coeff n ∈ P) (hfd0 : 0 < degree f) (h0 : f.coeff 0 ∉ P^2) (hu : f.is_primitive) : irreducible f := have hf0 : f ≠ 0, from λ _, by simp only [*, not_true, submodule.zero_mem, coeff_zero] at *, have hf : f.map (mk P) = C (mk P (leading_coeff f)) * X ^ nat_degree f, from map_eq_C_mul_X_pow_of_forall_coeff_mem hfP, have hfd0 : 0 < f.nat_degree, from with_bot.coe_lt_coe.1 (lt_of_lt_of_le hfd0 degree_le_nat_degree), ⟨mt degree_eq_zero_of_is_unit (λ h, by simp only [*, lt_irrefl] at *), begin rintros p q rfl, rw [polynomial.map_mul] at hf, rcases mul_eq_mul_prime_pow (show prime (X : polynomial (R ⧸ P)), from monic_X.prime_of_degree_eq_one degree_X) hf with ⟨m, n, b, c, hmnd, hbc, hp, hq⟩, have hmn : 0 < m → 0 < n → false, { assume hm0 hn0, refine h0 _, rw [coeff_zero_eq_eval_zero, eval_mul, sq], exact ideal.mul_mem_mul (eval_zero_mem_ideal_of_eq_mul_X_pow hp hm0) (eval_zero_mem_ideal_of_eq_mul_X_pow hq hn0) }, have hpql0 : (mk P) (p * q).leading_coeff ≠ 0, { rwa [ne.def, eq_zero_iff_mem] }, have hp0 : p ≠ 0, from λ h, by simp only [*, zero_mul, eq_self_iff_true, not_true, ne.def] at *, have hq0 : q ≠ 0, from λ h, by simp only [*, eq_self_iff_true, not_true, ne.def, mul_zero] at *, have hbc0 : degree b = 0 ∧ degree c = 0, { apply_fun degree at hbc, rwa [degree_C hpql0, degree_mul, eq_comm, nat.with_bot.add_eq_zero_iff] at hbc }, have hmp : m ≤ nat_degree p, from le_nat_degree_of_map_eq_mul_X_pow hP hp hbc0.1, have hnq : n ≤ nat_degree q, from le_nat_degree_of_map_eq_mul_X_pow hP hq hbc0.2, have hpmqn : p.nat_degree = m ∧ q.nat_degree = n, { rw [nat_degree_mul hp0 hq0] at hmnd, clear_except hmnd hmp hnq, contrapose hmnd, apply ne_of_lt, rw not_and_distrib at hmnd, cases hmnd, { exact add_lt_add_of_lt_of_le (lt_of_le_of_ne hmp (ne.symm hmnd)) hnq }, { exact add_lt_add_of_le_of_lt hmp (lt_of_le_of_ne hnq (ne.symm hmnd)) } }, obtain rfl | rfl : m = 0 ∨ n = 0, { rwa [pos_iff_ne_zero, pos_iff_ne_zero, imp_false, not_not, ← or_iff_not_imp_left] at hmn }, { exact or.inl (is_unit_of_nat_degree_eq_zero_of_forall_dvd_is_unit hu hpmqn.1) }, { exact or.inr (is_unit_of_nat_degree_eq_zero_of_forall_dvd_is_unit (by simpa only [mul_comm] using hu) hpmqn.2) } end⟩ end polynomial