Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Anne Baanen. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Anne Baanen | |
-/ | |
import group_theory.quotient_group | |
import ring_theory.dedekind_domain.ideal | |
/-! | |
# The ideal class group | |
This file defines the ideal class group `class_group R K` of fractional ideals of `R` | |
inside `A`'s field of fractions `K`. | |
## Main definitions | |
- `to_principal_ideal` sends an invertible `x : K` to an invertible fractional ideal | |
- `class_group` is the quotient of invertible fractional ideals modulo `to_principal_ideal.range` | |
- `class_group.mk0` sends a nonzero integral ideal in a Dedekind domain to its class | |
## Main results | |
- `class_group.mk0_eq_mk0_iff` shows the equivalence with the "classical" definition, | |
where `I ~ J` iff `x I = y J` for `x y ≠ (0 : R)` | |
-/ | |
variables {R K L : Type*} [comm_ring R] | |
variables [field K] [field L] [decidable_eq L] | |
variables [algebra R K] [is_fraction_ring R K] | |
variables [algebra K L] [finite_dimensional K L] | |
variables [algebra R L] [is_scalar_tower R K L] | |
open_locale non_zero_divisors | |
open is_localization is_fraction_ring fractional_ideal units | |
section | |
variables (R K) | |
/-- `to_principal_ideal R K x` sends `x ≠ 0 : K` to the fractional `R`-ideal generated by `x` -/ | |
@[irreducible] | |
def to_principal_ideal : Kˣ →* (fractional_ideal R⁰ K)ˣ := | |
{ to_fun := λ x, | |
⟨span_singleton _ x, | |
span_singleton _ x⁻¹, | |
by simp only [span_singleton_one, units.mul_inv', span_singleton_mul_span_singleton], | |
by simp only [span_singleton_one, units.inv_mul', span_singleton_mul_span_singleton]⟩, | |
map_mul' := λ x y, ext | |
(by simp only [units.coe_mk, units.coe_mul, span_singleton_mul_span_singleton]), | |
map_one' := ext (by simp only [span_singleton_one, units.coe_mk, units.coe_one]) } | |
local attribute [semireducible] to_principal_ideal | |
variables {R K} | |
@[simp] lemma coe_to_principal_ideal (x : Kˣ) : | |
(to_principal_ideal R K x : fractional_ideal R⁰ K) = span_singleton _ x := | |
rfl | |
@[simp] lemma to_principal_ideal_eq_iff {I : (fractional_ideal R⁰ K)ˣ} {x : Kˣ} : | |
to_principal_ideal R K x = I ↔ span_singleton R⁰ (x : K) = I := | |
units.ext_iff | |
end | |
instance principal_ideals.normal : (to_principal_ideal R K).range.normal := | |
subgroup.normal_of_comm _ | |
section | |
variables (R K) | |
/-- The ideal class group of `R` in a field of fractions `K` | |
is the group of invertible fractional ideals modulo the principal ideals. -/ | |
@[derive(comm_group)] | |
def class_group := (fractional_ideal R⁰ K)ˣ ⧸ (to_principal_ideal R K).range | |
instance : inhabited (class_group R K) := ⟨1⟩ | |
variables {R} [is_domain R] | |
/-- Send a nonzero integral ideal to an invertible fractional ideal. -/ | |
@[simps] | |
noncomputable def fractional_ideal.mk0 [is_dedekind_domain R] : | |
(ideal R)⁰ →* (fractional_ideal R⁰ K)ˣ := | |
{ to_fun := λ I, units.mk0 I ((fractional_ideal.coe_to_fractional_ideal_ne_zero (le_refl R⁰)).mpr | |
(mem_non_zero_divisors_iff_ne_zero.mp I.2)), | |
map_one' := by simp, | |
map_mul' := λ x y, by simp } | |
/-- Send a nonzero ideal to the corresponding class in the class group. -/ | |
@[simps] | |
noncomputable def class_group.mk0 [is_dedekind_domain R] : | |
(ideal R)⁰ →* class_group R K := | |
(quotient_group.mk' _).comp (fractional_ideal.mk0 K) | |
variables {K} | |
lemma class_group.mk0_eq_mk0_iff_exists_fraction_ring [is_dedekind_domain R] {I J : (ideal R)⁰} : | |
class_group.mk0 K I = class_group.mk0 K J ↔ | |
∃ (x ≠ (0 : K)), span_singleton R⁰ x * I = J := | |
begin | |
simp only [class_group.mk0, monoid_hom.comp_apply, quotient_group.mk'_eq_mk'], | |
split, | |
{ rintros ⟨_, ⟨x, rfl⟩, hx⟩, | |
refine ⟨x, x.ne_zero, _⟩, | |
simpa only [mul_comm, coe_mk0, monoid_hom.to_fun_eq_coe, coe_to_principal_ideal, units.coe_mul] | |
using congr_arg (coe : _ → fractional_ideal R⁰ K) hx }, | |
{ rintros ⟨x, hx, eq_J⟩, | |
refine ⟨_, ⟨units.mk0 x hx, rfl⟩, units.ext _⟩, | |
simpa only [fractional_ideal.mk0_apply, units.coe_mk0, mul_comm, coe_to_principal_ideal, | |
coe_coe, units.coe_mul] using eq_J } | |
end | |
lemma class_group.mk0_eq_mk0_iff [is_dedekind_domain R] {I J : (ideal R)⁰} : | |
class_group.mk0 K I = class_group.mk0 K J ↔ | |
∃ (x y : R) (hx : x ≠ 0) (hy : y ≠ 0), ideal.span {x} * (I : ideal R) = ideal.span {y} * J := | |
begin | |
refine class_group.mk0_eq_mk0_iff_exists_fraction_ring.trans ⟨_, _⟩, | |
{ rintros ⟨z, hz, h⟩, | |
obtain ⟨x, ⟨y, hy⟩, rfl⟩ := is_localization.mk'_surjective R⁰ z, | |
refine ⟨x, y, _, mem_non_zero_divisors_iff_ne_zero.mp hy, _⟩, | |
{ rintro hx, apply hz, | |
rw [hx, is_fraction_ring.mk'_eq_div, (algebra_map R K).map_zero, zero_div] }, | |
{ exact (fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal K hy).mp h } }, | |
{ rintros ⟨x, y, hx, hy, h⟩, | |
have hy' : y ∈ R⁰ := mem_non_zero_divisors_iff_ne_zero.mpr hy, | |
refine ⟨is_localization.mk' K x ⟨y, hy'⟩, _, _⟩, | |
{ contrapose! hx, | |
rwa [is_localization.mk'_eq_iff_eq_mul, zero_mul, ← (algebra_map R K).map_zero, | |
(is_fraction_ring.injective R K).eq_iff] at hx }, | |
{ exact (fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal K hy').mpr h } }, | |
end | |
lemma class_group.mk0_surjective [is_dedekind_domain R] : | |
function.surjective (class_group.mk0 K : (ideal R)⁰ → class_group R K) := | |
begin | |
rintros ⟨I⟩, | |
obtain ⟨a, a_ne_zero', ha⟩ := I.1.2, | |
have a_ne_zero := mem_non_zero_divisors_iff_ne_zero.mp a_ne_zero', | |
have fa_ne_zero : (algebra_map R K) a ≠ 0 := | |
is_fraction_ring.to_map_ne_zero_of_mem_non_zero_divisors a_ne_zero', | |
refine ⟨⟨{ carrier := { x | (algebra_map R K a)⁻¹ * algebra_map R K x ∈ I.1 }, .. }, _⟩, _⟩, | |
{ simp only [ring_hom.map_add, set.mem_set_of_eq, mul_zero, ring_hom.map_mul, mul_add], | |
exact λ _ _ ha hb, submodule.add_mem I ha hb }, | |
{ simp only [ring_hom.map_zero, set.mem_set_of_eq, mul_zero, ring_hom.map_mul], | |
exact submodule.zero_mem I }, | |
{ intros c _ hb, | |
simp only [smul_eq_mul, set.mem_set_of_eq, mul_zero, ring_hom.map_mul, mul_add, | |
mul_left_comm ((algebra_map R K) a)⁻¹], | |
rw ← algebra.smul_def c, | |
exact submodule.smul_mem I c hb }, | |
{ rw [mem_non_zero_divisors_iff_ne_zero, submodule.zero_eq_bot, submodule.ne_bot_iff], | |
obtain ⟨x, x_ne, x_mem⟩ := exists_ne_zero_mem_is_integer I.ne_zero, | |
refine ⟨a * x, _, mul_ne_zero a_ne_zero x_ne⟩, | |
change ((algebra_map R K) a)⁻¹ * (algebra_map R K) (a * x) ∈ I.1, | |
rwa [ring_hom.map_mul, ← mul_assoc, inv_mul_cancel fa_ne_zero, one_mul] }, | |
{ symmetry, | |
apply quotient.sound, | |
change setoid.r _ _, | |
rw quotient_group.left_rel_apply, | |
refine ⟨units.mk0 (algebra_map R K a) fa_ne_zero, _⟩, | |
apply | _ _ I,|
rw [← mul_assoc, mul_right_inv, one_mul, eq_comm, mul_comm I], | |
apply units.ext, | |
simp only [monoid_hom.coe_mk, subtype.coe_mk, ring_hom.map_mul, coe_coe, | |
units.coe_mul, coe_to_principal_ideal, coe_mk0, | |
fractional_ideal.eq_span_singleton_mul], | |
split, | |
{ intros zJ' hzJ', | |
obtain ⟨zJ, hzJ : (algebra_map R K a)⁻¹ * algebra_map R K zJ ∈ ↑I, rfl⟩ := | |
(mem_coe_ideal R⁰).mp hzJ', | |
refine ⟨_, hzJ, _⟩, | |
rw [← mul_assoc, mul_inv_cancel fa_ne_zero, one_mul] }, | |
{ intros zI' hzI', | |
obtain ⟨y, hy⟩ := ha zI' hzI', | |
rw [← algebra.smul_def, fractional_ideal.mk0_apply, coe_mk0, coe_coe, mem_coe_ideal], | |
refine ⟨y, _, hy⟩, | |
show (algebra_map R K a)⁻¹ * algebra_map R K y ∈ (I : fractional_ideal R⁰ K), | |
rwa [hy, algebra.smul_def, ← mul_assoc, inv_mul_cancel fa_ne_zero, one_mul] } } | |
end | |
end | |
lemma class_group.mk_eq_one_iff | |
{I : (fractional_ideal R⁰ K)ˣ} : | |
quotient_group.mk' (to_principal_ideal R K).range I = 1 ↔ | |
(I : submodule R K).is_principal := | |
begin | |
rw [← (quotient_group.mk' _).map_one, eq_comm, quotient_group.mk'_eq_mk'], | |
simp only [exists_prop, one_mul, exists_eq_right, to_principal_ideal_eq_iff, | |
monoid_hom.mem_range, coe_coe], | |
refine ⟨λ ⟨x, hx⟩, ⟨⟨x, by rw [← hx, coe_span_singleton]⟩⟩, _⟩, | |
unfreezingI { intros hI }, | |
obtain ⟨x, hx⟩ := | .is_principal.principal _ _ _ _ _ _ hI,|
have hx' : (I : fractional_ideal R⁰ K) = span_singleton R⁰ x, | |
{ apply subtype.coe_injective, rw [hx, coe_span_singleton] }, | |
refine ⟨units.mk0 x _, _⟩, | |
{ intro x_eq, apply units.ne_zero I, simp [hx', x_eq] }, | |
simp [hx'] | |
end | |
variables [is_domain R] | |
lemma class_group.mk0_eq_one_iff [is_dedekind_domain R] | |
{I : ideal R} (hI : I ∈ (ideal R)⁰) : | |
class_group.mk0 K ⟨I, hI⟩ = 1 ↔ I.is_principal := | |
class_group.mk_eq_one_iff.trans (coe_submodule_is_principal R K) | |
/-- The class group of principal ideal domain is finite (in fact a singleton). | |
TODO: generalize to Dedekind domains -/ | |
instance [is_principal_ideal_ring R] : | |
fintype (class_group R K) := | |
{ elems := {1}, | |
complete := | |
begin | |
rintros ⟨I⟩, | |
rw [finset.mem_singleton], | |
exact class_group.mk_eq_one_iff.mpr (I : fractional_ideal R⁰ K).is_principal | |
end } | |
/-- The class number of a principal ideal domain is `1`. -/ | |
lemma card_class_group_eq_one [is_principal_ideal_ring R] : | |
fintype.card (class_group R K) = 1 := | |
begin | |
rw fintype.card_eq_one_iff, | |
use 1, | |
rintros ⟨I⟩, | |
exact class_group.mk_eq_one_iff.mpr (I : fractional_ideal R⁰ K).is_principal | |
end | |
/-- The class number is `1` iff the ring of integers is a principal ideal domain. -/ | |
lemma card_class_group_eq_one_iff [is_dedekind_domain R] [fintype (class_group R K)] : | |
fintype.card (class_group R K) = 1 ↔ is_principal_ideal_ring R := | |
begin | |
split, swap, { introsI, convert card_class_group_eq_one, assumption, assumption, }, | |
rw fintype.card_eq_one_iff, | |
rintros ⟨I, hI⟩, | |
have eq_one : ∀ J : class_group R K, J = 1 := λ J, trans (hI J) (hI 1).symm, | |
refine ⟨λ I, _⟩, | |
by_cases hI : I = ⊥, | |
{ rw hI, exact bot_is_principal }, | |
exact (class_group.mk0_eq_one_iff (mem_non_zero_divisors_iff_ne_zero.mpr hI)).mp (eq_one _), | |
end | |