Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,054 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/-
Copyright (c) 2021 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/

import group_theory.quotient_group
import ring_theory.dedekind_domain.ideal

/-!
# The ideal class group

This file defines the ideal class group `class_group R K` of fractional ideals of `R`
inside `A`'s field of fractions `K`.

## Main definitions
 - `to_principal_ideal` sends an invertible `x : K` to an invertible fractional ideal
 - `class_group` is the quotient of invertible fractional ideals modulo `to_principal_ideal.range`
 - `class_group.mk0` sends a nonzero integral ideal in a Dedekind domain to its class

## Main results
 - `class_group.mk0_eq_mk0_iff` shows the equivalence with the "classical" definition,
   where `I ~ J` iff `x I = y J` for `x y ≠ (0 : R)`
-/

variables {R K L : Type*} [comm_ring R]
variables [field K] [field L] [decidable_eq L]
variables [algebra R K] [is_fraction_ring R K]
variables [algebra K L] [finite_dimensional K L]
variables [algebra R L] [is_scalar_tower R K L]

open_locale non_zero_divisors

open is_localization is_fraction_ring fractional_ideal units

section

variables (R K)

/-- `to_principal_ideal R K x` sends `x ≠ 0 : K` to the fractional `R`-ideal generated by `x` -/
@[irreducible]
def to_principal_ideal : Kˣ →* (fractional_ideal R⁰ K)ˣ :=
{ to_fun := λ x,
  ⟨span_singleton _ x,
   span_singleton _ x⁻¹,
   by simp only [span_singleton_one, units.mul_inv', span_singleton_mul_span_singleton],
   by simp only [span_singleton_one, units.inv_mul', span_singleton_mul_span_singleton]⟩,
  map_mul' := λ x y, ext
    (by simp only [units.coe_mk, units.coe_mul, span_singleton_mul_span_singleton]),
  map_one' := ext (by simp only [span_singleton_one, units.coe_mk, units.coe_one]) }

local attribute [semireducible] to_principal_ideal

variables {R K}

@[simp] lemma coe_to_principal_ideal (x : Kˣ) :
  (to_principal_ideal R K x : fractional_ideal R⁰ K) = span_singleton _ x :=
rfl

@[simp] lemma to_principal_ideal_eq_iff {I : (fractional_ideal R⁰ K)ˣ} {x : Kˣ} :
  to_principal_ideal R K x = I ↔ span_singleton R⁰ (x : K) = I :=
units.ext_iff

end

instance principal_ideals.normal : (to_principal_ideal R K).range.normal :=
subgroup.normal_of_comm _

section

variables (R K)

/-- The ideal class group of `R` in a field of fractions `K`
is the group of invertible fractional ideals modulo the principal ideals. -/
@[derive(comm_group)]
def class_group := (fractional_ideal R⁰ K)ˣ ⧸ (to_principal_ideal R K).range

instance : inhabited (class_group R K) := ⟨1⟩

variables {R} [is_domain R]

/-- Send a nonzero integral ideal to an invertible fractional ideal. -/
@[simps]
noncomputable def fractional_ideal.mk0 [is_dedekind_domain R] :
  (ideal R)⁰ →* (fractional_ideal R⁰ K)ˣ :=
{ to_fun := λ I, units.mk0 I ((fractional_ideal.coe_to_fractional_ideal_ne_zero (le_refl R⁰)).mpr
    (mem_non_zero_divisors_iff_ne_zero.mp I.2)),
  map_one' := by simp,
  map_mul' := λ x y, by simp }

/-- Send a nonzero ideal to the corresponding class in the class group. -/
@[simps]
noncomputable def class_group.mk0 [is_dedekind_domain R] :
  (ideal R)⁰ →* class_group R K :=
(quotient_group.mk' _).comp (fractional_ideal.mk0 K)

variables {K}

lemma class_group.mk0_eq_mk0_iff_exists_fraction_ring [is_dedekind_domain R] {I J : (ideal R)⁰} :
  class_group.mk0 K I = class_group.mk0 K J ↔
    ∃ (x ≠ (0 : K)), span_singleton R⁰ x * I = J :=
begin
  simp only [class_group.mk0, monoid_hom.comp_apply, quotient_group.mk'_eq_mk'],
  split,
  { rintros ⟨_, ⟨x, rfl⟩, hx⟩,
    refine ⟨x, x.ne_zero, _⟩,
    simpa only [mul_comm, coe_mk0, monoid_hom.to_fun_eq_coe, coe_to_principal_ideal, units.coe_mul]
      using congr_arg (coe : _ → fractional_ideal R⁰ K) hx },
  { rintros ⟨x, hx, eq_J⟩,
    refine ⟨_, ⟨units.mk0 x hx, rfl⟩, units.ext _⟩,
    simpa only [fractional_ideal.mk0_apply, units.coe_mk0, mul_comm, coe_to_principal_ideal,
        coe_coe, units.coe_mul] using eq_J }
end

lemma class_group.mk0_eq_mk0_iff [is_dedekind_domain R] {I J : (ideal R)⁰} :
  class_group.mk0 K I = class_group.mk0 K J ↔
    ∃ (x y : R) (hx : x ≠ 0) (hy : y ≠ 0), ideal.span {x} * (I : ideal R) = ideal.span {y} * J :=
begin
  refine class_group.mk0_eq_mk0_iff_exists_fraction_ring.trans ⟨_, _⟩,
  { rintros ⟨z, hz, h⟩,
    obtain ⟨x, ⟨y, hy⟩, rfl⟩ := is_localization.mk'_surjective R⁰ z,
    refine ⟨x, y, _, mem_non_zero_divisors_iff_ne_zero.mp hy, _⟩,
    { rintro hx, apply hz,
      rw [hx, is_fraction_ring.mk'_eq_div, (algebra_map R K).map_zero, zero_div] },
    { exact (fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal K hy).mp h } },
  { rintros ⟨x, y, hx, hy, h⟩,
    have hy' : y ∈ R⁰ := mem_non_zero_divisors_iff_ne_zero.mpr hy,
    refine ⟨is_localization.mk' K x ⟨y, hy'⟩, _, _⟩,
    { contrapose! hx,
      rwa [is_localization.mk'_eq_iff_eq_mul, zero_mul, ← (algebra_map R K).map_zero,
           (is_fraction_ring.injective R K).eq_iff] at hx },
    { exact (fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal K hy').mpr h } },
end

lemma class_group.mk0_surjective [is_dedekind_domain R] :
  function.surjective (class_group.mk0 K : (ideal R)⁰ → class_group R K) :=
begin
  rintros ⟨I⟩,
  obtain ⟨a, a_ne_zero', ha⟩ := I.1.2,
  have a_ne_zero := mem_non_zero_divisors_iff_ne_zero.mp a_ne_zero',
  have fa_ne_zero : (algebra_map R K) a ≠ 0 :=
    is_fraction_ring.to_map_ne_zero_of_mem_non_zero_divisors a_ne_zero',
  refine ⟨⟨{ carrier := { x | (algebra_map R K a)⁻¹ * algebra_map R K x ∈ I.1 }, .. }, _⟩, _⟩,
  { simp only [ring_hom.map_add, set.mem_set_of_eq, mul_zero, ring_hom.map_mul, mul_add],
    exact λ _ _ ha hb, submodule.add_mem I ha hb },
  { simp only [ring_hom.map_zero, set.mem_set_of_eq, mul_zero, ring_hom.map_mul],
    exact submodule.zero_mem I },
  { intros c _ hb,
    simp only [smul_eq_mul, set.mem_set_of_eq, mul_zero, ring_hom.map_mul, mul_add,
               mul_left_comm ((algebra_map R K) a)⁻¹],
    rw ← algebra.smul_def c,
    exact submodule.smul_mem I c hb },
  { rw [mem_non_zero_divisors_iff_ne_zero, submodule.zero_eq_bot, submodule.ne_bot_iff],
    obtain ⟨x, x_ne, x_mem⟩ := exists_ne_zero_mem_is_integer I.ne_zero,
    refine ⟨a * x, _, mul_ne_zero a_ne_zero x_ne⟩,
    change ((algebra_map R K) a)⁻¹ * (algebra_map R K) (a * x) ∈ I.1,
    rwa [ring_hom.map_mul, ← mul_assoc, inv_mul_cancel fa_ne_zero, one_mul] },
  { symmetry,
    apply quotient.sound,
    change setoid.r _ _,
    rw quotient_group.left_rel_apply,
    refine ⟨units.mk0 (algebra_map R K a) fa_ne_zero, _⟩,
    apply @mul_left_cancel _ _ I,
    rw [← mul_assoc, mul_right_inv, one_mul, eq_comm, mul_comm I],
    apply units.ext,
    simp only [monoid_hom.coe_mk, subtype.coe_mk, ring_hom.map_mul, coe_coe,
               units.coe_mul, coe_to_principal_ideal, coe_mk0,
               fractional_ideal.eq_span_singleton_mul],
    split,
    { intros zJ' hzJ',
      obtain ⟨zJ, hzJ : (algebra_map R K a)⁻¹ * algebra_map R K zJ ∈ ↑I, rfl⟩ :=
        (mem_coe_ideal R⁰).mp hzJ',
      refine ⟨_, hzJ, _⟩,
      rw [← mul_assoc, mul_inv_cancel fa_ne_zero, one_mul] },
    { intros zI' hzI',
      obtain ⟨y, hy⟩ := ha zI' hzI',
      rw [← algebra.smul_def, fractional_ideal.mk0_apply, coe_mk0, coe_coe, mem_coe_ideal],
      refine ⟨y, _, hy⟩,
      show (algebra_map R K a)⁻¹ * algebra_map R K y ∈ (I : fractional_ideal R⁰ K),
      rwa [hy, algebra.smul_def, ← mul_assoc, inv_mul_cancel fa_ne_zero, one_mul] } }
end

end

lemma class_group.mk_eq_one_iff
  {I : (fractional_ideal R⁰ K)ˣ} :
  quotient_group.mk' (to_principal_ideal R K).range I = 1 ↔
    (I : submodule R K).is_principal :=
begin
  rw [← (quotient_group.mk' _).map_one, eq_comm, quotient_group.mk'_eq_mk'],
  simp only [exists_prop, one_mul, exists_eq_right, to_principal_ideal_eq_iff,
             monoid_hom.mem_range, coe_coe],
  refine ⟨λ ⟨x, hx⟩, ⟨⟨x, by rw [← hx, coe_span_singleton]⟩⟩, _⟩,
  unfreezingI { intros hI },
  obtain ⟨x, hx⟩ := @submodule.is_principal.principal _ _ _ _ _ _ hI,
  have hx' : (I : fractional_ideal R⁰ K) = span_singleton R⁰ x,
  { apply subtype.coe_injective, rw [hx, coe_span_singleton] },
  refine ⟨units.mk0 x _, _⟩,
  { intro x_eq, apply units.ne_zero I, simp [hx', x_eq] },
  simp [hx']
end

variables [is_domain R]

lemma class_group.mk0_eq_one_iff [is_dedekind_domain R]
  {I : ideal R} (hI : I ∈ (ideal R)⁰) :
  class_group.mk0 K ⟨I, hI⟩ = 1 ↔ I.is_principal :=
class_group.mk_eq_one_iff.trans (coe_submodule_is_principal R K)

/-- The class group of principal ideal domain is finite (in fact a singleton).
TODO: generalize to Dedekind domains -/
instance [is_principal_ideal_ring R] :
  fintype (class_group R K) :=
{ elems := {1},
  complete :=
  begin
    rintros ⟨I⟩,
    rw [finset.mem_singleton],
    exact class_group.mk_eq_one_iff.mpr (I : fractional_ideal R⁰ K).is_principal
  end }

/-- The class number of a principal ideal domain is `1`. -/
lemma card_class_group_eq_one [is_principal_ideal_ring R] :
  fintype.card (class_group R K) = 1 :=
begin
  rw fintype.card_eq_one_iff,
  use 1,
  rintros ⟨I⟩,
  exact class_group.mk_eq_one_iff.mpr (I : fractional_ideal R⁰ K).is_principal
end

/-- The class number is `1` iff the ring of integers is a principal ideal domain. -/
lemma card_class_group_eq_one_iff [is_dedekind_domain R] [fintype (class_group R K)] :
  fintype.card (class_group R K) = 1 ↔ is_principal_ideal_ring R :=
begin
  split, swap, { introsI, convert card_class_group_eq_one, assumption, assumption, },
  rw fintype.card_eq_one_iff,
  rintros ⟨I, hI⟩,
  have eq_one : ∀ J : class_group R K, J = 1 := λ J, trans (hI J) (hI 1).symm,
  refine ⟨λ I, _⟩,
  by_cases hI : I = ⊥,
  { rw hI, exact bot_is_principal },
  exact (class_group.mk0_eq_one_iff (mem_non_zero_divisors_iff_ne_zero.mpr hI)).mp (eq_one _),
end