/- Copyright (c) 2021 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen -/ import group_theory.quotient_group import ring_theory.dedekind_domain.ideal /-! # The ideal class group This file defines the ideal class group `class_group R K` of fractional ideals of `R` inside `A`'s field of fractions `K`. ## Main definitions - `to_principal_ideal` sends an invertible `x : K` to an invertible fractional ideal - `class_group` is the quotient of invertible fractional ideals modulo `to_principal_ideal.range` - `class_group.mk0` sends a nonzero integral ideal in a Dedekind domain to its class ## Main results - `class_group.mk0_eq_mk0_iff` shows the equivalence with the "classical" definition, where `I ~ J` iff `x I = y J` for `x y ≠ (0 : R)` -/ variables {R K L : Type*} [comm_ring R] variables [field K] [field L] [decidable_eq L] variables [algebra R K] [is_fraction_ring R K] variables [algebra K L] [finite_dimensional K L] variables [algebra R L] [is_scalar_tower R K L] open_locale non_zero_divisors open is_localization is_fraction_ring fractional_ideal units section variables (R K) /-- `to_principal_ideal R K x` sends `x ≠ 0 : K` to the fractional `R`-ideal generated by `x` -/ @[irreducible] def to_principal_ideal : Kˣ →* (fractional_ideal R⁰ K)ˣ := { to_fun := λ x, ⟨span_singleton _ x, span_singleton _ x⁻¹, by simp only [span_singleton_one, units.mul_inv', span_singleton_mul_span_singleton], by simp only [span_singleton_one, units.inv_mul', span_singleton_mul_span_singleton]⟩, map_mul' := λ x y, ext (by simp only [units.coe_mk, units.coe_mul, span_singleton_mul_span_singleton]), map_one' := ext (by simp only [span_singleton_one, units.coe_mk, units.coe_one]) } local attribute [semireducible] to_principal_ideal variables {R K} @[simp] lemma coe_to_principal_ideal (x : Kˣ) : (to_principal_ideal R K x : fractional_ideal R⁰ K) = span_singleton _ x := rfl @[simp] lemma to_principal_ideal_eq_iff {I : (fractional_ideal R⁰ K)ˣ} {x : Kˣ} : to_principal_ideal R K x = I ↔ span_singleton R⁰ (x : K) = I := units.ext_iff end instance principal_ideals.normal : (to_principal_ideal R K).range.normal := subgroup.normal_of_comm _ section variables (R K) /-- The ideal class group of `R` in a field of fractions `K` is the group of invertible fractional ideals modulo the principal ideals. -/ @[derive(comm_group)] def class_group := (fractional_ideal R⁰ K)ˣ ⧸ (to_principal_ideal R K).range instance : inhabited (class_group R K) := ⟨1⟩ variables {R} [is_domain R] /-- Send a nonzero integral ideal to an invertible fractional ideal. -/ @[simps] noncomputable def fractional_ideal.mk0 [is_dedekind_domain R] : (ideal R)⁰ →* (fractional_ideal R⁰ K)ˣ := { to_fun := λ I, units.mk0 I ((fractional_ideal.coe_to_fractional_ideal_ne_zero (le_refl R⁰)).mpr (mem_non_zero_divisors_iff_ne_zero.mp I.2)), map_one' := by simp, map_mul' := λ x y, by simp } /-- Send a nonzero ideal to the corresponding class in the class group. -/ @[simps] noncomputable def class_group.mk0 [is_dedekind_domain R] : (ideal R)⁰ →* class_group R K := (quotient_group.mk' _).comp (fractional_ideal.mk0 K) variables {K} lemma class_group.mk0_eq_mk0_iff_exists_fraction_ring [is_dedekind_domain R] {I J : (ideal R)⁰} : class_group.mk0 K I = class_group.mk0 K J ↔ ∃ (x ≠ (0 : K)), span_singleton R⁰ x * I = J := begin simp only [class_group.mk0, monoid_hom.comp_apply, quotient_group.mk'_eq_mk'], split, { rintros ⟨_, ⟨x, rfl⟩, hx⟩, refine ⟨x, x.ne_zero, _⟩, simpa only [mul_comm, coe_mk0, monoid_hom.to_fun_eq_coe, coe_to_principal_ideal, units.coe_mul] using congr_arg (coe : _ → fractional_ideal R⁰ K) hx }, { rintros ⟨x, hx, eq_J⟩, refine ⟨_, ⟨units.mk0 x hx, rfl⟩, units.ext _⟩, simpa only [fractional_ideal.mk0_apply, units.coe_mk0, mul_comm, coe_to_principal_ideal, coe_coe, units.coe_mul] using eq_J } end lemma class_group.mk0_eq_mk0_iff [is_dedekind_domain R] {I J : (ideal R)⁰} : class_group.mk0 K I = class_group.mk0 K J ↔ ∃ (x y : R) (hx : x ≠ 0) (hy : y ≠ 0), ideal.span {x} * (I : ideal R) = ideal.span {y} * J := begin refine class_group.mk0_eq_mk0_iff_exists_fraction_ring.trans ⟨_, _⟩, { rintros ⟨z, hz, h⟩, obtain ⟨x, ⟨y, hy⟩, rfl⟩ := is_localization.mk'_surjective R⁰ z, refine ⟨x, y, _, mem_non_zero_divisors_iff_ne_zero.mp hy, _⟩, { rintro hx, apply hz, rw [hx, is_fraction_ring.mk'_eq_div, (algebra_map R K).map_zero, zero_div] }, { exact (fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal K hy).mp h } }, { rintros ⟨x, y, hx, hy, h⟩, have hy' : y ∈ R⁰ := mem_non_zero_divisors_iff_ne_zero.mpr hy, refine ⟨is_localization.mk' K x ⟨y, hy'⟩, _, _⟩, { contrapose! hx, rwa [is_localization.mk'_eq_iff_eq_mul, zero_mul, ← (algebra_map R K).map_zero, (is_fraction_ring.injective R K).eq_iff] at hx }, { exact (fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal K hy').mpr h } }, end lemma class_group.mk0_surjective [is_dedekind_domain R] : function.surjective (class_group.mk0 K : (ideal R)⁰ → class_group R K) := begin rintros ⟨I⟩, obtain ⟨a, a_ne_zero', ha⟩ := I.1.2, have a_ne_zero := mem_non_zero_divisors_iff_ne_zero.mp a_ne_zero', have fa_ne_zero : (algebra_map R K) a ≠ 0 := is_fraction_ring.to_map_ne_zero_of_mem_non_zero_divisors a_ne_zero', refine ⟨⟨{ carrier := { x | (algebra_map R K a)⁻¹ * algebra_map R K x ∈ I.1 }, .. }, _⟩, _⟩, { simp only [ring_hom.map_add, set.mem_set_of_eq, mul_zero, ring_hom.map_mul, mul_add], exact λ _ _ ha hb, submodule.add_mem I ha hb }, { simp only [ring_hom.map_zero, set.mem_set_of_eq, mul_zero, ring_hom.map_mul], exact submodule.zero_mem I }, { intros c _ hb, simp only [smul_eq_mul, set.mem_set_of_eq, mul_zero, ring_hom.map_mul, mul_add, mul_left_comm ((algebra_map R K) a)⁻¹], rw ← algebra.smul_def c, exact submodule.smul_mem I c hb }, { rw [mem_non_zero_divisors_iff_ne_zero, submodule.zero_eq_bot, submodule.ne_bot_iff], obtain ⟨x, x_ne, x_mem⟩ := exists_ne_zero_mem_is_integer I.ne_zero, refine ⟨a * x, _, mul_ne_zero a_ne_zero x_ne⟩, change ((algebra_map R K) a)⁻¹ * (algebra_map R K) (a * x) ∈ I.1, rwa [ring_hom.map_mul, ← mul_assoc, inv_mul_cancel fa_ne_zero, one_mul] }, { symmetry, apply quotient.sound, change setoid.r _ _, rw quotient_group.left_rel_apply, refine ⟨units.mk0 (algebra_map R K a) fa_ne_zero, _⟩, apply @mul_left_cancel _ _ I, rw [← mul_assoc, mul_right_inv, one_mul, eq_comm, mul_comm I], apply units.ext, simp only [monoid_hom.coe_mk, subtype.coe_mk, ring_hom.map_mul, coe_coe, units.coe_mul, coe_to_principal_ideal, coe_mk0, fractional_ideal.eq_span_singleton_mul], split, { intros zJ' hzJ', obtain ⟨zJ, hzJ : (algebra_map R K a)⁻¹ * algebra_map R K zJ ∈ ↑I, rfl⟩ := (mem_coe_ideal R⁰).mp hzJ', refine ⟨_, hzJ, _⟩, rw [← mul_assoc, mul_inv_cancel fa_ne_zero, one_mul] }, { intros zI' hzI', obtain ⟨y, hy⟩ := ha zI' hzI', rw [← algebra.smul_def, fractional_ideal.mk0_apply, coe_mk0, coe_coe, mem_coe_ideal], refine ⟨y, _, hy⟩, show (algebra_map R K a)⁻¹ * algebra_map R K y ∈ (I : fractional_ideal R⁰ K), rwa [hy, algebra.smul_def, ← mul_assoc, inv_mul_cancel fa_ne_zero, one_mul] } } end end lemma class_group.mk_eq_one_iff {I : (fractional_ideal R⁰ K)ˣ} : quotient_group.mk' (to_principal_ideal R K).range I = 1 ↔ (I : submodule R K).is_principal := begin rw [← (quotient_group.mk' _).map_one, eq_comm, quotient_group.mk'_eq_mk'], simp only [exists_prop, one_mul, exists_eq_right, to_principal_ideal_eq_iff, monoid_hom.mem_range, coe_coe], refine ⟨λ ⟨x, hx⟩, ⟨⟨x, by rw [← hx, coe_span_singleton]⟩⟩, _⟩, unfreezingI { intros hI }, obtain ⟨x, hx⟩ := @submodule.is_principal.principal _ _ _ _ _ _ hI, have hx' : (I : fractional_ideal R⁰ K) = span_singleton R⁰ x, { apply subtype.coe_injective, rw [hx, coe_span_singleton] }, refine ⟨units.mk0 x _, _⟩, { intro x_eq, apply units.ne_zero I, simp [hx', x_eq] }, simp [hx'] end variables [is_domain R] lemma class_group.mk0_eq_one_iff [is_dedekind_domain R] {I : ideal R} (hI : I ∈ (ideal R)⁰) : class_group.mk0 K ⟨I, hI⟩ = 1 ↔ I.is_principal := class_group.mk_eq_one_iff.trans (coe_submodule_is_principal R K) /-- The class group of principal ideal domain is finite (in fact a singleton). TODO: generalize to Dedekind domains -/ instance [is_principal_ideal_ring R] : fintype (class_group R K) := { elems := {1}, complete := begin rintros ⟨I⟩, rw [finset.mem_singleton], exact class_group.mk_eq_one_iff.mpr (I : fractional_ideal R⁰ K).is_principal end } /-- The class number of a principal ideal domain is `1`. -/ lemma card_class_group_eq_one [is_principal_ideal_ring R] : fintype.card (class_group R K) = 1 := begin rw fintype.card_eq_one_iff, use 1, rintros ⟨I⟩, exact class_group.mk_eq_one_iff.mpr (I : fractional_ideal R⁰ K).is_principal end /-- The class number is `1` iff the ring of integers is a principal ideal domain. -/ lemma card_class_group_eq_one_iff [is_dedekind_domain R] [fintype (class_group R K)] : fintype.card (class_group R K) = 1 ↔ is_principal_ideal_ring R := begin split, swap, { introsI, convert card_class_group_eq_one, assumption, assumption, }, rw fintype.card_eq_one_iff, rintros ⟨I, hI⟩, have eq_one : ∀ J : class_group R K, J = 1 := λ J, trans (hI J) (hI 1).symm, refine ⟨λ I, _⟩, by_cases hI : I = ⊥, { rw hI, exact bot_is_principal }, exact (class_group.mk0_eq_one_iff (mem_non_zero_divisors_iff_ne_zero.mpr hI)).mp (eq_one _), end