Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import algebra.monoid_algebra.basic | |
import algebra.char_p.invertible | |
import algebra.regular.basic | |
import linear_algebra.basis | |
/-! | |
# Maschke's theorem | |
We prove **Maschke's theorem** for finite groups, | |
in the formulation that every submodule of a `k[G]` module has a complement, | |
when `k` is a field with `invertible (fintype.card G : k)`. | |
We do the core computation in greater generality. | |
For any `[comm_ring k]` in which `[invertible (fintype.card G : k)]`, | |
and a `k[G]`-linear map `i : V → W` which admits a `k`-linear retraction `π`, | |
we produce a `k[G]`-linear retraction by | |
taking the average over `G` of the conjugates of `π`. | |
## Implementation Notes | |
* These results assume `invertible (fintype.card G : k)` which is equivalent to the more | |
familiar `¬(ring_char k ∣ fintype.card G)`. It is possible to convert between them using | |
`invertible_of_ring_char_not_dvd` and `not_ring_char_dvd_of_invertible`. | |
## Future work | |
It's not so far to give the usual statement, that every finite dimensional representation | |
of a finite group is semisimple (i.e. a direct sum of irreducibles). | |
-/ | |
universes u | |
noncomputable theory | |
open module | |
open monoid_algebra | |
open_locale big_operators | |
section | |
-- At first we work with any `[comm_ring k]`, and add the assumption that | |
-- `[invertible (fintype.card G : k)]` when it is required. | |
variables {k : Type u} [comm_ring k] {G : Type u} [group G] | |
variables {V : Type u} [add_comm_group V] [module k V] [module (monoid_algebra k G) V] | |
variables [is_scalar_tower k (monoid_algebra k G) V] | |
variables {W : Type u} [add_comm_group W] [module k W] [module (monoid_algebra k G) W] | |
variables [is_scalar_tower k (monoid_algebra k G) W] | |
/-! | |
We now do the key calculation in Maschke's theorem. | |
Given `V → W`, an inclusion of `k[G]` modules,, | |
assume we have some retraction `π` (i.e. `∀ v, π (i v) = v`), | |
just as a `k`-linear map. | |
(When `k` is a field, this will be available cheaply, by choosing a basis.) | |
We now construct a retraction of the inclusion as a `k[G]`-linear map, | |
by the formula | |
$$ \frac{1}{|G|} \sum_{g \in G} g⁻¹ • π(g • -). $$ | |
-/ | |
namespace linear_map | |
variables (π : W →ₗ[k] V) | |
include π | |
/-- | |
We define the conjugate of `π` by `g`, as a `k`-linear map. | |
-/ | |
def conjugate (g : G) : W →ₗ[k] V := | |
((group_smul.linear_map k V g⁻¹).comp π).comp (group_smul.linear_map k W g) | |
variables (i : V →ₗ[monoid_algebra k G] W) (h : ∀ v : V, π (i v) = v) | |
section | |
include h | |
lemma conjugate_i (g : G) (v : V) : (conjugate π g) (i v) = v := | |
begin | |
dsimp [conjugate], | |
simp only [←i.map_smul, h, ←mul_smul, single_mul_single, mul_one, mul_left_inv], | |
change (1 : monoid_algebra k G) • v = v, | |
simp, | |
end | |
end | |
variables (G) [fintype G] | |
/-- | |
The sum of the conjugates of `π` by each element `g : G`, as a `k`-linear map. | |
(We postpone dividing by the size of the group as long as possible.) | |
-/ | |
def sum_of_conjugates : W →ₗ[k] V := | |
∑ g : G, π.conjugate g | |
/-- | |
In fact, the sum over `g : G` of the conjugate of `π` by `g` is a `k[G]`-linear map. | |
-/ | |
def sum_of_conjugates_equivariant : W →ₗ[monoid_algebra k G] V := | |
monoid_algebra.equivariant_of_linear_of_comm (π.sum_of_conjugates G) (λ g v, | |
begin | |
dsimp [sum_of_conjugates], | |
simp only [linear_map.sum_apply, finset.smul_sum], | |
dsimp [conjugate], | |
conv_lhs | |
{ rw [←finset.univ_map_embedding (mul_right_embedding g⁻¹)], | |
simp only [mul_right_embedding], }, | |
simp only [←mul_smul, single_mul_single, mul_inv_rev, mul_one, function.embedding.coe_fn_mk, | |
finset.sum_map, inv_inv, inv_mul_cancel_right] | |
end) | |
section | |
variables [inv : invertible (fintype.card G : k)] | |
include inv | |
/-- | |
We construct our `k[G]`-linear retraction of `i` as | |
$$ \frac{1}{|G|} \sum_{g \in G} g⁻¹ • π(g • -). $$ | |
-/ | |
def equivariant_projection : W →ₗ[monoid_algebra k G] V := | |
⅟(fintype.card G : k) • (π.sum_of_conjugates_equivariant G) | |
include h | |
lemma equivariant_projection_condition (v : V) : (π.equivariant_projection G) (i v) = v := | |
begin | |
rw [equivariant_projection, smul_apply, sum_of_conjugates_equivariant, | |
equivariant_of_linear_of_comm_apply, sum_of_conjugates], | |
rw [linear_map.sum_apply], | |
simp only [conjugate_i π i h], | |
rw [finset.sum_const, finset.card_univ, nsmul_eq_smul_cast k, | |
←mul_smul, invertible.inv_of_mul_self, one_smul], | |
end | |
end | |
end linear_map | |
end | |
namespace char_zero | |
variables {k : Type u} [field k] {G : Type u} [fintype G] [group G] [char_zero k] | |
instance : invertible (fintype.card G : k) := | |
invertible_of_ring_char_not_dvd (by simp [fintype.card_eq_zero_iff]) | |
end char_zero | |
namespace monoid_algebra | |
-- Now we work over a `[field k]`. | |
variables {k : Type u} [field k] {G : Type u} [fintype G] [invertible (fintype.card G : k)] | |
variables [group G] | |
variables {V : Type u} [add_comm_group V] [module k V] [module (monoid_algebra k G) V] | |
variables [is_scalar_tower k (monoid_algebra k G) V] | |
variables {W : Type u} [add_comm_group W] [module k W] [module (monoid_algebra k G) W] | |
variables [is_scalar_tower k (monoid_algebra k G) W] | |
lemma exists_left_inverse_of_injective | |
(f : V →ₗ[monoid_algebra k G] W) (hf : f.ker = ⊥) : | |
∃ (g : W →ₗ[monoid_algebra k G] V), g.comp f = linear_map.id := | |
begin | |
obtain ⟨φ, hφ⟩ := (f.restrict_scalars k).exists_left_inverse_of_injective | |
(by simp only [hf, submodule.restrict_scalars_bot, linear_map.ker_restrict_scalars]), | |
refine ⟨φ.equivariant_projection G, _⟩, | |
apply linear_map.ext, | |
intro v, | |
simp only [linear_map.id_coe, id.def, linear_map.comp_apply], | |
apply linear_map.equivariant_projection_condition, | |
intro v, | |
have := congr_arg linear_map.to_fun hφ, | |
exact congr_fun this v | |
end | |
namespace submodule | |
lemma exists_is_compl | |
(p : submodule (monoid_algebra k G) V) : | |
∃ q : submodule (monoid_algebra k G) V, is_compl p q := | |
let ⟨f, hf⟩ := monoid_algebra.exists_left_inverse_of_injective p.subtype p.ker_subtype in | |
⟨f.ker, linear_map.is_compl_of_proj $ linear_map.ext_iff.1 hf⟩ | |
/-- This also implies an instance `is_semisimple_module (monoid_algebra k G) V`. -/ | |
instance is_complemented : is_complemented (submodule (monoid_algebra k G) V) := | |
⟨exists_is_compl⟩ | |
end submodule | |
end monoid_algebra | |