Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.35 kB
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import algebra.monoid_algebra.basic
import algebra.char_p.invertible
import algebra.regular.basic
import linear_algebra.basis
/-!
# Maschke's theorem
We prove **Maschke's theorem** for finite groups,
in the formulation that every submodule of a `k[G]` module has a complement,
when `k` is a field with `invertible (fintype.card G : k)`.
We do the core computation in greater generality.
For any `[comm_ring k]` in which `[invertible (fintype.card G : k)]`,
and a `k[G]`-linear map `i : V → W` which admits a `k`-linear retraction `π`,
we produce a `k[G]`-linear retraction by
taking the average over `G` of the conjugates of `π`.
## Implementation Notes
* These results assume `invertible (fintype.card G : k)` which is equivalent to the more
familiar `¬(ring_char k ∣ fintype.card G)`. It is possible to convert between them using
`invertible_of_ring_char_not_dvd` and `not_ring_char_dvd_of_invertible`.
## Future work
It's not so far to give the usual statement, that every finite dimensional representation
of a finite group is semisimple (i.e. a direct sum of irreducibles).
-/
universes u
noncomputable theory
open module
open monoid_algebra
open_locale big_operators
section
-- At first we work with any `[comm_ring k]`, and add the assumption that
-- `[invertible (fintype.card G : k)]` when it is required.
variables {k : Type u} [comm_ring k] {G : Type u} [group G]
variables {V : Type u} [add_comm_group V] [module k V] [module (monoid_algebra k G) V]
variables [is_scalar_tower k (monoid_algebra k G) V]
variables {W : Type u} [add_comm_group W] [module k W] [module (monoid_algebra k G) W]
variables [is_scalar_tower k (monoid_algebra k G) W]
/-!
We now do the key calculation in Maschke's theorem.
Given `V → W`, an inclusion of `k[G]` modules,,
assume we have some retraction `π` (i.e. `∀ v, π (i v) = v`),
just as a `k`-linear map.
(When `k` is a field, this will be available cheaply, by choosing a basis.)
We now construct a retraction of the inclusion as a `k[G]`-linear map,
by the formula
$$ \frac{1}{|G|} \sum_{g \in G} g⁻¹ • π(g • -). $$
-/
namespace linear_map
variables (π : W →ₗ[k] V)
include π
/--
We define the conjugate of `π` by `g`, as a `k`-linear map.
-/
def conjugate (g : G) : W →ₗ[k] V :=
((group_smul.linear_map k V g⁻¹).comp π).comp (group_smul.linear_map k W g)
variables (i : V →ₗ[monoid_algebra k G] W) (h : ∀ v : V, π (i v) = v)
section
include h
lemma conjugate_i (g : G) (v : V) : (conjugate π g) (i v) = v :=
begin
dsimp [conjugate],
simp only [←i.map_smul, h, ←mul_smul, single_mul_single, mul_one, mul_left_inv],
change (1 : monoid_algebra k G) • v = v,
simp,
end
end
variables (G) [fintype G]
/--
The sum of the conjugates of `π` by each element `g : G`, as a `k`-linear map.
(We postpone dividing by the size of the group as long as possible.)
-/
def sum_of_conjugates : W →ₗ[k] V :=
∑ g : G, π.conjugate g
/--
In fact, the sum over `g : G` of the conjugate of `π` by `g` is a `k[G]`-linear map.
-/
def sum_of_conjugates_equivariant : W →ₗ[monoid_algebra k G] V :=
monoid_algebra.equivariant_of_linear_of_comm (π.sum_of_conjugates G) (λ g v,
begin
dsimp [sum_of_conjugates],
simp only [linear_map.sum_apply, finset.smul_sum],
dsimp [conjugate],
conv_lhs
{ rw [←finset.univ_map_embedding (mul_right_embedding g⁻¹)],
simp only [mul_right_embedding], },
simp only [←mul_smul, single_mul_single, mul_inv_rev, mul_one, function.embedding.coe_fn_mk,
finset.sum_map, inv_inv, inv_mul_cancel_right]
end)
section
variables [inv : invertible (fintype.card G : k)]
include inv
/--
We construct our `k[G]`-linear retraction of `i` as
$$ \frac{1}{|G|} \sum_{g \in G} g⁻¹ • π(g • -). $$
-/
def equivariant_projection : W →ₗ[monoid_algebra k G] V :=
⅟(fintype.card G : k) • (π.sum_of_conjugates_equivariant G)
include h
lemma equivariant_projection_condition (v : V) : (π.equivariant_projection G) (i v) = v :=
begin
rw [equivariant_projection, smul_apply, sum_of_conjugates_equivariant,
equivariant_of_linear_of_comm_apply, sum_of_conjugates],
rw [linear_map.sum_apply],
simp only [conjugate_i π i h],
rw [finset.sum_const, finset.card_univ, nsmul_eq_smul_cast k,
←mul_smul, invertible.inv_of_mul_self, one_smul],
end
end
end linear_map
end
namespace char_zero
variables {k : Type u} [field k] {G : Type u} [fintype G] [group G] [char_zero k]
instance : invertible (fintype.card G : k) :=
invertible_of_ring_char_not_dvd (by simp [fintype.card_eq_zero_iff])
end char_zero
namespace monoid_algebra
-- Now we work over a `[field k]`.
variables {k : Type u} [field k] {G : Type u} [fintype G] [invertible (fintype.card G : k)]
variables [group G]
variables {V : Type u} [add_comm_group V] [module k V] [module (monoid_algebra k G) V]
variables [is_scalar_tower k (monoid_algebra k G) V]
variables {W : Type u} [add_comm_group W] [module k W] [module (monoid_algebra k G) W]
variables [is_scalar_tower k (monoid_algebra k G) W]
lemma exists_left_inverse_of_injective
(f : V →ₗ[monoid_algebra k G] W) (hf : f.ker = ⊥) :
∃ (g : W →ₗ[monoid_algebra k G] V), g.comp f = linear_map.id :=
begin
obtain ⟨φ, hφ⟩ := (f.restrict_scalars k).exists_left_inverse_of_injective
(by simp only [hf, submodule.restrict_scalars_bot, linear_map.ker_restrict_scalars]),
refine ⟨φ.equivariant_projection G, _⟩,
apply linear_map.ext,
intro v,
simp only [linear_map.id_coe, id.def, linear_map.comp_apply],
apply linear_map.equivariant_projection_condition,
intro v,
have := congr_arg linear_map.to_fun hφ,
exact congr_fun this v
end
namespace submodule
lemma exists_is_compl
(p : submodule (monoid_algebra k G) V) :
∃ q : submodule (monoid_algebra k G) V, is_compl p q :=
let ⟨f, hf⟩ := monoid_algebra.exists_left_inverse_of_injective p.subtype p.ker_subtype in
⟨f.ker, linear_map.is_compl_of_proj $ linear_map.ext_iff.1 hf⟩
/-- This also implies an instance `is_semisimple_module (monoid_algebra k G) V`. -/
instance is_complemented : is_complemented (submodule (monoid_algebra k G) V) :=
⟨exists_is_compl⟩
end submodule
end monoid_algebra