Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,346 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import algebra.monoid_algebra.basic
import algebra.char_p.invertible
import algebra.regular.basic
import linear_algebra.basis
/-!
# Maschke's theorem
We prove **Maschke's theorem** for finite groups,
in the formulation that every submodule of a `k[G]` module has a complement,
when `k` is a field with `invertible (fintype.card G : k)`.
We do the core computation in greater generality.
For any `[comm_ring k]` in which `[invertible (fintype.card G : k)]`,
and a `k[G]`-linear map `i : V → W` which admits a `k`-linear retraction `π`,
we produce a `k[G]`-linear retraction by
taking the average over `G` of the conjugates of `π`.
## Implementation Notes
* These results assume `invertible (fintype.card G : k)` which is equivalent to the more
familiar `¬(ring_char k ∣ fintype.card G)`. It is possible to convert between them using
`invertible_of_ring_char_not_dvd` and `not_ring_char_dvd_of_invertible`.
## Future work
It's not so far to give the usual statement, that every finite dimensional representation
of a finite group is semisimple (i.e. a direct sum of irreducibles).
-/
universes u
noncomputable theory
open module
open monoid_algebra
open_locale big_operators
section
-- At first we work with any `[comm_ring k]`, and add the assumption that
-- `[invertible (fintype.card G : k)]` when it is required.
variables {k : Type u} [comm_ring k] {G : Type u} [group G]
variables {V : Type u} [add_comm_group V] [module k V] [module (monoid_algebra k G) V]
variables [is_scalar_tower k (monoid_algebra k G) V]
variables {W : Type u} [add_comm_group W] [module k W] [module (monoid_algebra k G) W]
variables [is_scalar_tower k (monoid_algebra k G) W]
/-!
We now do the key calculation in Maschke's theorem.
Given `V → W`, an inclusion of `k[G]` modules,,
assume we have some retraction `π` (i.e. `∀ v, π (i v) = v`),
just as a `k`-linear map.
(When `k` is a field, this will be available cheaply, by choosing a basis.)
We now construct a retraction of the inclusion as a `k[G]`-linear map,
by the formula
$$ \frac{1}{|G|} \sum_{g \in G} g⁻¹ • π(g • -). $$
-/
namespace linear_map
variables (π : W →ₗ[k] V)
include π
/--
We define the conjugate of `π` by `g`, as a `k`-linear map.
-/
def conjugate (g : G) : W →ₗ[k] V :=
((group_smul.linear_map k V g⁻¹).comp π).comp (group_smul.linear_map k W g)
variables (i : V →ₗ[monoid_algebra k G] W) (h : ∀ v : V, π (i v) = v)
section
include h
lemma conjugate_i (g : G) (v : V) : (conjugate π g) (i v) = v :=
begin
dsimp [conjugate],
simp only [←i.map_smul, h, ←mul_smul, single_mul_single, mul_one, mul_left_inv],
change (1 : monoid_algebra k G) • v = v,
simp,
end
end
variables (G) [fintype G]
/--
The sum of the conjugates of `π` by each element `g : G`, as a `k`-linear map.
(We postpone dividing by the size of the group as long as possible.)
-/
def sum_of_conjugates : W →ₗ[k] V :=
∑ g : G, π.conjugate g
/--
In fact, the sum over `g : G` of the conjugate of `π` by `g` is a `k[G]`-linear map.
-/
def sum_of_conjugates_equivariant : W →ₗ[monoid_algebra k G] V :=
monoid_algebra.equivariant_of_linear_of_comm (π.sum_of_conjugates G) (λ g v,
begin
dsimp [sum_of_conjugates],
simp only [linear_map.sum_apply, finset.smul_sum],
dsimp [conjugate],
conv_lhs
{ rw [←finset.univ_map_embedding (mul_right_embedding g⁻¹)],
simp only [mul_right_embedding], },
simp only [←mul_smul, single_mul_single, mul_inv_rev, mul_one, function.embedding.coe_fn_mk,
finset.sum_map, inv_inv, inv_mul_cancel_right]
end)
section
variables [inv : invertible (fintype.card G : k)]
include inv
/--
We construct our `k[G]`-linear retraction of `i` as
$$ \frac{1}{|G|} \sum_{g \in G} g⁻¹ • π(g • -). $$
-/
def equivariant_projection : W →ₗ[monoid_algebra k G] V :=
⅟(fintype.card G : k) • (π.sum_of_conjugates_equivariant G)
include h
lemma equivariant_projection_condition (v : V) : (π.equivariant_projection G) (i v) = v :=
begin
rw [equivariant_projection, smul_apply, sum_of_conjugates_equivariant,
equivariant_of_linear_of_comm_apply, sum_of_conjugates],
rw [linear_map.sum_apply],
simp only [conjugate_i π i h],
rw [finset.sum_const, finset.card_univ, nsmul_eq_smul_cast k,
←mul_smul, invertible.inv_of_mul_self, one_smul],
end
end
end linear_map
end
namespace char_zero
variables {k : Type u} [field k] {G : Type u} [fintype G] [group G] [char_zero k]
instance : invertible (fintype.card G : k) :=
invertible_of_ring_char_not_dvd (by simp [fintype.card_eq_zero_iff])
end char_zero
namespace monoid_algebra
-- Now we work over a `[field k]`.
variables {k : Type u} [field k] {G : Type u} [fintype G] [invertible (fintype.card G : k)]
variables [group G]
variables {V : Type u} [add_comm_group V] [module k V] [module (monoid_algebra k G) V]
variables [is_scalar_tower k (monoid_algebra k G) V]
variables {W : Type u} [add_comm_group W] [module k W] [module (monoid_algebra k G) W]
variables [is_scalar_tower k (monoid_algebra k G) W]
lemma exists_left_inverse_of_injective
(f : V →ₗ[monoid_algebra k G] W) (hf : f.ker = ⊥) :
∃ (g : W →ₗ[monoid_algebra k G] V), g.comp f = linear_map.id :=
begin
obtain ⟨φ, hφ⟩ := (f.restrict_scalars k).exists_left_inverse_of_injective
(by simp only [hf, submodule.restrict_scalars_bot, linear_map.ker_restrict_scalars]),
refine ⟨φ.equivariant_projection G, _⟩,
apply linear_map.ext,
intro v,
simp only [linear_map.id_coe, id.def, linear_map.comp_apply],
apply linear_map.equivariant_projection_condition,
intro v,
have := congr_arg linear_map.to_fun hφ,
exact congr_fun this v
end
namespace submodule
lemma exists_is_compl
(p : submodule (monoid_algebra k G) V) :
∃ q : submodule (monoid_algebra k G) V, is_compl p q :=
let ⟨f, hf⟩ := monoid_algebra.exists_left_inverse_of_injective p.subtype p.ker_subtype in
⟨f.ker, linear_map.is_compl_of_proj $ linear_map.ext_iff.1 hf⟩
/-- This also implies an instance `is_semisimple_module (monoid_algebra k G) V`. -/
instance is_complemented : is_complemented (submodule (monoid_algebra k G) V) :=
⟨exists_is_compl⟩
end submodule
end monoid_algebra
|