Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,346 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import algebra.monoid_algebra.basic
import algebra.char_p.invertible
import algebra.regular.basic
import linear_algebra.basis

/-!
# Maschke's theorem

We prove **Maschke's theorem** for finite groups,
in the formulation that every submodule of a `k[G]` module has a complement,
when `k` is a field with `invertible (fintype.card G : k)`.

We do the core computation in greater generality.
For any `[comm_ring k]` in which  `[invertible (fintype.card G : k)]`,
and a `k[G]`-linear map `i : V → W` which admits a `k`-linear retraction `π`,
we produce a `k[G]`-linear retraction by
taking the average over `G` of the conjugates of `π`.

## Implementation Notes
* These results assume `invertible (fintype.card G : k)` which is equivalent to the more
familiar `¬(ring_char k ∣ fintype.card G)`. It is possible to convert between them using
`invertible_of_ring_char_not_dvd` and `not_ring_char_dvd_of_invertible`.


## Future work
It's not so far to give the usual statement, that every finite dimensional representation
of a finite group is semisimple (i.e. a direct sum of irreducibles).
-/

universes u

noncomputable theory
open module
open monoid_algebra
open_locale big_operators

section

-- At first we work with any `[comm_ring k]`, and add the assumption that
-- `[invertible (fintype.card G : k)]` when it is required.
variables {k : Type u} [comm_ring k] {G : Type u} [group G]

variables {V : Type u} [add_comm_group V] [module k V] [module (monoid_algebra k G) V]
variables [is_scalar_tower k (monoid_algebra k G) V]
variables {W : Type u} [add_comm_group W] [module k W] [module (monoid_algebra k G) W]
variables [is_scalar_tower k (monoid_algebra k G) W]

/-!
We now do the key calculation in Maschke's theorem.

Given `V → W`, an inclusion of `k[G]` modules,,
assume we have some retraction `π` (i.e. `∀ v, π (i v) = v`),
just as a `k`-linear map.
(When `k` is a field, this will be available cheaply, by choosing a basis.)

We now construct a retraction of the inclusion as a `k[G]`-linear map,
by the formula
$$ \frac{1}{|G|} \sum_{g \in G} g⁻¹ • π(g • -). $$
-/

namespace linear_map

variables (π : W →ₗ[k] V)
include π

/--
We define the conjugate of `π` by `g`, as a `k`-linear map.
-/
def conjugate (g : G) : W →ₗ[k] V :=
((group_smul.linear_map k V g⁻¹).comp π).comp (group_smul.linear_map k W g)

variables (i : V →ₗ[monoid_algebra k G] W) (h : ∀ v : V, π (i v) = v)

section
include h

lemma conjugate_i (g : G) (v : V) : (conjugate π g) (i v) = v :=
begin
  dsimp [conjugate],
  simp only [←i.map_smul, h, ←mul_smul, single_mul_single, mul_one, mul_left_inv],
  change (1 : monoid_algebra k G) • v = v,
  simp,
end
end

variables (G) [fintype G]

/--
The sum of the conjugates of `π` by each element `g : G`, as a `k`-linear map.

(We postpone dividing by the size of the group as long as possible.)
-/
def sum_of_conjugates : W →ₗ[k] V :=
∑ g : G, π.conjugate g

/--
In fact, the sum over `g : G` of the conjugate of `π` by `g` is a `k[G]`-linear map.
-/
def sum_of_conjugates_equivariant : W →ₗ[monoid_algebra k G] V :=
monoid_algebra.equivariant_of_linear_of_comm (π.sum_of_conjugates G) (λ g v,
begin
  dsimp [sum_of_conjugates],
  simp only [linear_map.sum_apply, finset.smul_sum],
  dsimp [conjugate],
  conv_lhs
  { rw [←finset.univ_map_embedding (mul_right_embedding g⁻¹)],
    simp only [mul_right_embedding], },
  simp only [←mul_smul, single_mul_single, mul_inv_rev, mul_one, function.embedding.coe_fn_mk,
    finset.sum_map, inv_inv, inv_mul_cancel_right]
end)

section
variables [inv : invertible (fintype.card G : k)]
include inv

/--
We construct our `k[G]`-linear retraction of `i` as
$$ \frac{1}{|G|} \sum_{g \in G} g⁻¹ • π(g • -). $$
-/
def equivariant_projection : W →ₗ[monoid_algebra k G] V :=
⅟(fintype.card G : k) • (π.sum_of_conjugates_equivariant G)

include h

lemma equivariant_projection_condition (v : V) : (π.equivariant_projection G) (i v) = v :=
begin
  rw [equivariant_projection, smul_apply, sum_of_conjugates_equivariant,
    equivariant_of_linear_of_comm_apply, sum_of_conjugates],
  rw [linear_map.sum_apply],
  simp only [conjugate_i π i h],
  rw [finset.sum_const, finset.card_univ, nsmul_eq_smul_cast k,
    ←mul_smul, invertible.inv_of_mul_self, one_smul],
end
end
end linear_map
end

namespace char_zero

variables {k : Type u} [field k] {G : Type u} [fintype G] [group G] [char_zero k]

instance : invertible (fintype.card G : k) :=
invertible_of_ring_char_not_dvd (by simp [fintype.card_eq_zero_iff])

end char_zero

namespace monoid_algebra

-- Now we work over a `[field k]`.
variables {k : Type u} [field k] {G : Type u} [fintype G] [invertible (fintype.card G : k)]
variables [group G]
variables {V : Type u} [add_comm_group V] [module k V] [module (monoid_algebra k G) V]
variables [is_scalar_tower k (monoid_algebra k G) V]
variables {W : Type u} [add_comm_group W] [module k W] [module (monoid_algebra k G) W]
variables [is_scalar_tower k (monoid_algebra k G) W]

lemma exists_left_inverse_of_injective
  (f : V →ₗ[monoid_algebra k G] W) (hf : f.ker = ⊥) :
  ∃ (g : W →ₗ[monoid_algebra k G] V), g.comp f = linear_map.id :=
begin
  obtain ⟨φ, hφ⟩ := (f.restrict_scalars k).exists_left_inverse_of_injective
    (by simp only [hf, submodule.restrict_scalars_bot, linear_map.ker_restrict_scalars]),
  refine ⟨φ.equivariant_projection G, _⟩,
  apply linear_map.ext,
  intro v,
  simp only [linear_map.id_coe, id.def, linear_map.comp_apply],
  apply linear_map.equivariant_projection_condition,
  intro v,
  have := congr_arg linear_map.to_fun hφ,
  exact congr_fun this v
end

namespace submodule

lemma exists_is_compl
  (p : submodule (monoid_algebra k G) V) :
  ∃ q : submodule (monoid_algebra k G) V, is_compl p q :=
let ⟨f, hf⟩ := monoid_algebra.exists_left_inverse_of_injective p.subtype p.ker_subtype in
⟨f.ker, linear_map.is_compl_of_proj $ linear_map.ext_iff.1 hf⟩

/-- This also implies an instance `is_semisimple_module (monoid_algebra k G) V`. -/
instance is_complemented : is_complemented (submodule (monoid_algebra k G) V) :=
⟨exists_is_compl⟩

end submodule
end monoid_algebra