/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.monoid_algebra.basic import algebra.char_p.invertible import algebra.regular.basic import linear_algebra.basis /-! # Maschke's theorem We prove **Maschke's theorem** for finite groups, in the formulation that every submodule of a `k[G]` module has a complement, when `k` is a field with `invertible (fintype.card G : k)`. We do the core computation in greater generality. For any `[comm_ring k]` in which `[invertible (fintype.card G : k)]`, and a `k[G]`-linear map `i : V → W` which admits a `k`-linear retraction `π`, we produce a `k[G]`-linear retraction by taking the average over `G` of the conjugates of `π`. ## Implementation Notes * These results assume `invertible (fintype.card G : k)` which is equivalent to the more familiar `¬(ring_char k ∣ fintype.card G)`. It is possible to convert between them using `invertible_of_ring_char_not_dvd` and `not_ring_char_dvd_of_invertible`. ## Future work It's not so far to give the usual statement, that every finite dimensional representation of a finite group is semisimple (i.e. a direct sum of irreducibles). -/ universes u noncomputable theory open module open monoid_algebra open_locale big_operators section -- At first we work with any `[comm_ring k]`, and add the assumption that -- `[invertible (fintype.card G : k)]` when it is required. variables {k : Type u} [comm_ring k] {G : Type u} [group G] variables {V : Type u} [add_comm_group V] [module k V] [module (monoid_algebra k G) V] variables [is_scalar_tower k (monoid_algebra k G) V] variables {W : Type u} [add_comm_group W] [module k W] [module (monoid_algebra k G) W] variables [is_scalar_tower k (monoid_algebra k G) W] /-! We now do the key calculation in Maschke's theorem. Given `V → W`, an inclusion of `k[G]` modules,, assume we have some retraction `π` (i.e. `∀ v, π (i v) = v`), just as a `k`-linear map. (When `k` is a field, this will be available cheaply, by choosing a basis.) We now construct a retraction of the inclusion as a `k[G]`-linear map, by the formula $$ \frac{1}{|G|} \sum_{g \in G} g⁻¹ • π(g • -). $$ -/ namespace linear_map variables (π : W →ₗ[k] V) include π /-- We define the conjugate of `π` by `g`, as a `k`-linear map. -/ def conjugate (g : G) : W →ₗ[k] V := ((group_smul.linear_map k V g⁻¹).comp π).comp (group_smul.linear_map k W g) variables (i : V →ₗ[monoid_algebra k G] W) (h : ∀ v : V, π (i v) = v) section include h lemma conjugate_i (g : G) (v : V) : (conjugate π g) (i v) = v := begin dsimp [conjugate], simp only [←i.map_smul, h, ←mul_smul, single_mul_single, mul_one, mul_left_inv], change (1 : monoid_algebra k G) • v = v, simp, end end variables (G) [fintype G] /-- The sum of the conjugates of `π` by each element `g : G`, as a `k`-linear map. (We postpone dividing by the size of the group as long as possible.) -/ def sum_of_conjugates : W →ₗ[k] V := ∑ g : G, π.conjugate g /-- In fact, the sum over `g : G` of the conjugate of `π` by `g` is a `k[G]`-linear map. -/ def sum_of_conjugates_equivariant : W →ₗ[monoid_algebra k G] V := monoid_algebra.equivariant_of_linear_of_comm (π.sum_of_conjugates G) (λ g v, begin dsimp [sum_of_conjugates], simp only [linear_map.sum_apply, finset.smul_sum], dsimp [conjugate], conv_lhs { rw [←finset.univ_map_embedding (mul_right_embedding g⁻¹)], simp only [mul_right_embedding], }, simp only [←mul_smul, single_mul_single, mul_inv_rev, mul_one, function.embedding.coe_fn_mk, finset.sum_map, inv_inv, inv_mul_cancel_right] end) section variables [inv : invertible (fintype.card G : k)] include inv /-- We construct our `k[G]`-linear retraction of `i` as $$ \frac{1}{|G|} \sum_{g \in G} g⁻¹ • π(g • -). $$ -/ def equivariant_projection : W →ₗ[monoid_algebra k G] V := ⅟(fintype.card G : k) • (π.sum_of_conjugates_equivariant G) include h lemma equivariant_projection_condition (v : V) : (π.equivariant_projection G) (i v) = v := begin rw [equivariant_projection, smul_apply, sum_of_conjugates_equivariant, equivariant_of_linear_of_comm_apply, sum_of_conjugates], rw [linear_map.sum_apply], simp only [conjugate_i π i h], rw [finset.sum_const, finset.card_univ, nsmul_eq_smul_cast k, ←mul_smul, invertible.inv_of_mul_self, one_smul], end end end linear_map end namespace char_zero variables {k : Type u} [field k] {G : Type u} [fintype G] [group G] [char_zero k] instance : invertible (fintype.card G : k) := invertible_of_ring_char_not_dvd (by simp [fintype.card_eq_zero_iff]) end char_zero namespace monoid_algebra -- Now we work over a `[field k]`. variables {k : Type u} [field k] {G : Type u} [fintype G] [invertible (fintype.card G : k)] variables [group G] variables {V : Type u} [add_comm_group V] [module k V] [module (monoid_algebra k G) V] variables [is_scalar_tower k (monoid_algebra k G) V] variables {W : Type u} [add_comm_group W] [module k W] [module (monoid_algebra k G) W] variables [is_scalar_tower k (monoid_algebra k G) W] lemma exists_left_inverse_of_injective (f : V →ₗ[monoid_algebra k G] W) (hf : f.ker = ⊥) : ∃ (g : W →ₗ[monoid_algebra k G] V), g.comp f = linear_map.id := begin obtain ⟨φ, hφ⟩ := (f.restrict_scalars k).exists_left_inverse_of_injective (by simp only [hf, submodule.restrict_scalars_bot, linear_map.ker_restrict_scalars]), refine ⟨φ.equivariant_projection G, _⟩, apply linear_map.ext, intro v, simp only [linear_map.id_coe, id.def, linear_map.comp_apply], apply linear_map.equivariant_projection_condition, intro v, have := congr_arg linear_map.to_fun hφ, exact congr_fun this v end namespace submodule lemma exists_is_compl (p : submodule (monoid_algebra k G) V) : ∃ q : submodule (monoid_algebra k G) V, is_compl p q := let ⟨f, hf⟩ := monoid_algebra.exists_left_inverse_of_injective p.subtype p.ker_subtype in ⟨f.ker, linear_map.is_compl_of_proj $ linear_map.ext_iff.1 hf⟩ /-- This also implies an instance `is_semisimple_module (monoid_algebra k G) V`. -/ instance is_complemented : is_complemented (submodule (monoid_algebra k G) V) := ⟨exists_is_compl⟩ end submodule end monoid_algebra