Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.16 kB
/-
Copyright (c) 2022 Antoine Labelle. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Antoine Labelle
-/
import representation_theory.basic
import representation_theory.Rep
/-!
# Subspace of invariants a group representation
This file introduces the subspace of invariants of a group representation
and proves basic results about it.
The main tool used is the average of all elements of the group, seen as an element of
`monoid_algebra k G`. The action of this special element gives a projection onto the
subspace of invariants.
In order for the definition of the average element to make sense, we need to assume for most of the
results that the order of `G` is invertible in `k` (e. g. `k` has characteristic `0`).
-/
open_locale big_operators
open monoid_algebra
open representation
namespace group_algebra
variables (k G : Type*) [comm_semiring k] [group G]
variables [fintype G] [invertible (fintype.card G : k)]
/--
The average of all elements of the group `G`, considered as an element of `monoid_algebra k G`.
-/
noncomputable def average : monoid_algebra k G :=
⅟(fintype.card G : k) • ∑ g : G, of k G g
/--
`average k G` is invariant under left multiplication by elements of `G`.
-/
@[simp]
theorem mul_average_left (g : G) :
(finsupp.single g 1 * average k G : monoid_algebra k G) = average k G :=
begin
simp only [mul_one, finset.mul_sum, algebra.mul_smul_comm, average, monoid_algebra.of_apply,
finset.sum_congr, monoid_algebra.single_mul_single],
set f : G → monoid_algebra k G := λ x, finsupp.single x 1,
show ⅟ ↑(fintype.card G) • ∑ (x : G), f (g * x) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x,
rw function.bijective.sum_comp (group.mul_left_bijective g) _,
end
/--
`average k G` is invariant under right multiplication by elements of `G`.
-/
@[simp]
theorem mul_average_right (g : G) :
average k G * finsupp.single g 1 = average k G :=
begin
simp only [mul_one, finset.sum_mul, algebra.smul_mul_assoc, average, monoid_algebra.of_apply,
finset.sum_congr, monoid_algebra.single_mul_single],
set f : G → monoid_algebra k G := λ x, finsupp.single x 1,
show ⅟ ↑(fintype.card G) • ∑ (x : G), f (x * g) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x,
rw function.bijective.sum_comp (group.mul_right_bijective g) _,
end
end group_algebra
namespace representation
section invariants
open group_algebra
variables {k G V : Type*} [comm_semiring k] [group G] [add_comm_monoid V] [module k V]
variables (ρ : representation k G V)
/--
The subspace of invariants, consisting of the vectors fixed by all elements of `G`.
-/
def invariants : submodule k V :=
{ carrier := set_of (λ v, ∀ (g : G), ρ g v = v),
zero_mem' := λ g, by simp only [map_zero],
add_mem' := λ v w hv hw g, by simp only [hv g, hw g, map_add],
smul_mem' := λ r v hv g, by simp only [hv g, linear_map.map_smulₛₗ, ring_hom.id_apply]}
@[simp]
lemma mem_invariants (v : V) : v ∈ invariants ρ ↔ ∀ (g: G), ρ g v = v := by refl
lemma invariants_eq_inter :
(invariants ρ).carrier = ⋂ g : G, function.fixed_points (ρ g) :=
by {ext, simp [function.is_fixed_pt]}
variables [fintype G] [invertible (fintype.card G : k)]
/--
The action of `average k G` gives a projection map onto the subspace of invariants.
-/
@[simp]
noncomputable def average_map : V →ₗ[k] V := as_algebra_hom ρ (average k G)
/--
The `average_map` sends elements of `V` to the subspace of invariants.
-/
theorem average_map_invariant (v : V) : average_map ρ v ∈ invariants ρ :=
λ g, by rw [average_map, ←as_algebra_hom_single_one, ←linear_map.mul_apply,
←map_mul (as_algebra_hom ρ), mul_average_left]
/--
The `average_map` acts as the identity on the subspace of invariants.
-/
theorem average_map_id (v : V) (hv : v ∈ invariants ρ) : average_map ρ v = v :=
begin
rw mem_invariants at hv,
simp [average, map_sum, hv, finset.card_univ, nsmul_eq_smul_cast k _ v, smul_smul],
end
theorem is_proj_average_map : linear_map.is_proj ρ.invariants ρ.average_map :=
⟨ρ.average_map_invariant, ρ.average_map_id⟩
end invariants
namespace lin_hom
universes u
open category_theory Action
variables {k : Type u} [comm_ring k] {G : Group.{u}}
lemma mem_invariants_iff_comm {X Y : Rep k G} (f : X.V →ₗ[k] Y.V) (g : G) :
(lin_hom X.ρ Y.ρ) g f = f ↔ f.comp (X.ρ g) = (Y.ρ g).comp f :=
begin
dsimp,
erw [←ρ_Aut_apply_inv],
rw [←linear_map.comp_assoc, ←Module.comp_def, ←Module.comp_def, iso.inv_comp_eq, ρ_Aut_apply_hom],
exact comm,
end
/-- The invariants of the representation `lin_hom X.ρ Y.ρ` correspond to the the representation
homomorphisms from `X` to `Y` -/
@[simps]
def invariants_equiv_Rep_hom (X Y : Rep k G) : (lin_hom X.ρ Y.ρ).invariants ≃ₗ[k] (X ⟶ Y) :=
{ to_fun := λ f, ⟨f.val, λ g, (mem_invariants_iff_comm _ g).1 (f.property g)⟩,
map_add' := λ _ _, rfl,
map_smul' := λ _ _, rfl,
inv_fun := λ f, ⟨f.hom, λ g, (mem_invariants_iff_comm _ g).2 (f.comm g)⟩,
left_inv := λ _, by { ext, refl },
right_inv := λ _, by { ext, refl } }
end lin_hom
end representation