/- Copyright (c) 2022 Antoine Labelle. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Antoine Labelle -/ import representation_theory.basic import representation_theory.Rep /-! # Subspace of invariants a group representation This file introduces the subspace of invariants of a group representation and proves basic results about it. The main tool used is the average of all elements of the group, seen as an element of `monoid_algebra k G`. The action of this special element gives a projection onto the subspace of invariants. In order for the definition of the average element to make sense, we need to assume for most of the results that the order of `G` is invertible in `k` (e. g. `k` has characteristic `0`). -/ open_locale big_operators open monoid_algebra open representation namespace group_algebra variables (k G : Type*) [comm_semiring k] [group G] variables [fintype G] [invertible (fintype.card G : k)] /-- The average of all elements of the group `G`, considered as an element of `monoid_algebra k G`. -/ noncomputable def average : monoid_algebra k G := ⅟(fintype.card G : k) • ∑ g : G, of k G g /-- `average k G` is invariant under left multiplication by elements of `G`. -/ @[simp] theorem mul_average_left (g : G) : (finsupp.single g 1 * average k G : monoid_algebra k G) = average k G := begin simp only [mul_one, finset.mul_sum, algebra.mul_smul_comm, average, monoid_algebra.of_apply, finset.sum_congr, monoid_algebra.single_mul_single], set f : G → monoid_algebra k G := λ x, finsupp.single x 1, show ⅟ ↑(fintype.card G) • ∑ (x : G), f (g * x) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x, rw function.bijective.sum_comp (group.mul_left_bijective g) _, end /-- `average k G` is invariant under right multiplication by elements of `G`. -/ @[simp] theorem mul_average_right (g : G) : average k G * finsupp.single g 1 = average k G := begin simp only [mul_one, finset.sum_mul, algebra.smul_mul_assoc, average, monoid_algebra.of_apply, finset.sum_congr, monoid_algebra.single_mul_single], set f : G → monoid_algebra k G := λ x, finsupp.single x 1, show ⅟ ↑(fintype.card G) • ∑ (x : G), f (x * g) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x, rw function.bijective.sum_comp (group.mul_right_bijective g) _, end end group_algebra namespace representation section invariants open group_algebra variables {k G V : Type*} [comm_semiring k] [group G] [add_comm_monoid V] [module k V] variables (ρ : representation k G V) /-- The subspace of invariants, consisting of the vectors fixed by all elements of `G`. -/ def invariants : submodule k V := { carrier := set_of (λ v, ∀ (g : G), ρ g v = v), zero_mem' := λ g, by simp only [map_zero], add_mem' := λ v w hv hw g, by simp only [hv g, hw g, map_add], smul_mem' := λ r v hv g, by simp only [hv g, linear_map.map_smulₛₗ, ring_hom.id_apply]} @[simp] lemma mem_invariants (v : V) : v ∈ invariants ρ ↔ ∀ (g: G), ρ g v = v := by refl lemma invariants_eq_inter : (invariants ρ).carrier = ⋂ g : G, function.fixed_points (ρ g) := by {ext, simp [function.is_fixed_pt]} variables [fintype G] [invertible (fintype.card G : k)] /-- The action of `average k G` gives a projection map onto the subspace of invariants. -/ @[simp] noncomputable def average_map : V →ₗ[k] V := as_algebra_hom ρ (average k G) /-- The `average_map` sends elements of `V` to the subspace of invariants. -/ theorem average_map_invariant (v : V) : average_map ρ v ∈ invariants ρ := λ g, by rw [average_map, ←as_algebra_hom_single_one, ←linear_map.mul_apply, ←map_mul (as_algebra_hom ρ), mul_average_left] /-- The `average_map` acts as the identity on the subspace of invariants. -/ theorem average_map_id (v : V) (hv : v ∈ invariants ρ) : average_map ρ v = v := begin rw mem_invariants at hv, simp [average, map_sum, hv, finset.card_univ, nsmul_eq_smul_cast k _ v, smul_smul], end theorem is_proj_average_map : linear_map.is_proj ρ.invariants ρ.average_map := ⟨ρ.average_map_invariant, ρ.average_map_id⟩ end invariants namespace lin_hom universes u open category_theory Action variables {k : Type u} [comm_ring k] {G : Group.{u}} lemma mem_invariants_iff_comm {X Y : Rep k G} (f : X.V →ₗ[k] Y.V) (g : G) : (lin_hom X.ρ Y.ρ) g f = f ↔ f.comp (X.ρ g) = (Y.ρ g).comp f := begin dsimp, erw [←ρ_Aut_apply_inv], rw [←linear_map.comp_assoc, ←Module.comp_def, ←Module.comp_def, iso.inv_comp_eq, ρ_Aut_apply_hom], exact comm, end /-- The invariants of the representation `lin_hom X.ρ Y.ρ` correspond to the the representation homomorphisms from `X` to `Y` -/ @[simps] def invariants_equiv_Rep_hom (X Y : Rep k G) : (lin_hom X.ρ Y.ρ).invariants ≃ₗ[k] (X ⟶ Y) := { to_fun := λ f, ⟨f.val, λ g, (mem_invariants_iff_comm _ g).1 (f.property g)⟩, map_add' := λ _ _, rfl, map_smul' := λ _ _, rfl, inv_fun := λ f, ⟨f.hom, λ g, (mem_invariants_iff_comm _ g).2 (f.comm g)⟩, left_inv := λ _, by { ext, refl }, right_inv := λ _, by { ext, refl } } end lin_hom end representation