Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 5,156 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
/-
Copyright (c) 2022 Antoine Labelle. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Antoine Labelle
-/
import representation_theory.basic
import representation_theory.Rep
/-!
# Subspace of invariants a group representation
This file introduces the subspace of invariants of a group representation
and proves basic results about it.
The main tool used is the average of all elements of the group, seen as an element of
`monoid_algebra k G`. The action of this special element gives a projection onto the
subspace of invariants.
In order for the definition of the average element to make sense, we need to assume for most of the
results that the order of `G` is invertible in `k` (e. g. `k` has characteristic `0`).
-/
open_locale big_operators
open monoid_algebra
open representation
namespace group_algebra
variables (k G : Type*) [comm_semiring k] [group G]
variables [fintype G] [invertible (fintype.card G : k)]
/--
The average of all elements of the group `G`, considered as an element of `monoid_algebra k G`.
-/
noncomputable def average : monoid_algebra k G :=
⅟(fintype.card G : k) • ∑ g : G, of k G g
/--
`average k G` is invariant under left multiplication by elements of `G`.
-/
@[simp]
theorem mul_average_left (g : G) :
(finsupp.single g 1 * average k G : monoid_algebra k G) = average k G :=
begin
simp only [mul_one, finset.mul_sum, algebra.mul_smul_comm, average, monoid_algebra.of_apply,
finset.sum_congr, monoid_algebra.single_mul_single],
set f : G → monoid_algebra k G := λ x, finsupp.single x 1,
show ⅟ ↑(fintype.card G) • ∑ (x : G), f (g * x) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x,
rw function.bijective.sum_comp (group.mul_left_bijective g) _,
end
/--
`average k G` is invariant under right multiplication by elements of `G`.
-/
@[simp]
theorem mul_average_right (g : G) :
average k G * finsupp.single g 1 = average k G :=
begin
simp only [mul_one, finset.sum_mul, algebra.smul_mul_assoc, average, monoid_algebra.of_apply,
finset.sum_congr, monoid_algebra.single_mul_single],
set f : G → monoid_algebra k G := λ x, finsupp.single x 1,
show ⅟ ↑(fintype.card G) • ∑ (x : G), f (x * g) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x,
rw function.bijective.sum_comp (group.mul_right_bijective g) _,
end
end group_algebra
namespace representation
section invariants
open group_algebra
variables {k G V : Type*} [comm_semiring k] [group G] [add_comm_monoid V] [module k V]
variables (ρ : representation k G V)
/--
The subspace of invariants, consisting of the vectors fixed by all elements of `G`.
-/
def invariants : submodule k V :=
{ carrier := set_of (λ v, ∀ (g : G), ρ g v = v),
zero_mem' := λ g, by simp only [map_zero],
add_mem' := λ v w hv hw g, by simp only [hv g, hw g, map_add],
smul_mem' := λ r v hv g, by simp only [hv g, linear_map.map_smulₛₗ, ring_hom.id_apply]}
@[simp]
lemma mem_invariants (v : V) : v ∈ invariants ρ ↔ ∀ (g: G), ρ g v = v := by refl
lemma invariants_eq_inter :
(invariants ρ).carrier = ⋂ g : G, function.fixed_points (ρ g) :=
by {ext, simp [function.is_fixed_pt]}
variables [fintype G] [invertible (fintype.card G : k)]
/--
The action of `average k G` gives a projection map onto the subspace of invariants.
-/
@[simp]
noncomputable def average_map : V →ₗ[k] V := as_algebra_hom ρ (average k G)
/--
The `average_map` sends elements of `V` to the subspace of invariants.
-/
theorem average_map_invariant (v : V) : average_map ρ v ∈ invariants ρ :=
λ g, by rw [average_map, ←as_algebra_hom_single_one, ←linear_map.mul_apply,
←map_mul (as_algebra_hom ρ), mul_average_left]
/--
The `average_map` acts as the identity on the subspace of invariants.
-/
theorem average_map_id (v : V) (hv : v ∈ invariants ρ) : average_map ρ v = v :=
begin
rw mem_invariants at hv,
simp [average, map_sum, hv, finset.card_univ, nsmul_eq_smul_cast k _ v, smul_smul],
end
theorem is_proj_average_map : linear_map.is_proj ρ.invariants ρ.average_map :=
⟨ρ.average_map_invariant, ρ.average_map_id⟩
end invariants
namespace lin_hom
universes u
open category_theory Action
variables {k : Type u} [comm_ring k] {G : Group.{u}}
lemma mem_invariants_iff_comm {X Y : Rep k G} (f : X.V →ₗ[k] Y.V) (g : G) :
(lin_hom X.ρ Y.ρ) g f = f ↔ f.comp (X.ρ g) = (Y.ρ g).comp f :=
begin
dsimp,
erw [←ρ_Aut_apply_inv],
rw [←linear_map.comp_assoc, ←Module.comp_def, ←Module.comp_def, iso.inv_comp_eq, ρ_Aut_apply_hom],
exact comm,
end
/-- The invariants of the representation `lin_hom X.ρ Y.ρ` correspond to the the representation
homomorphisms from `X` to `Y` -/
@[simps]
def invariants_equiv_Rep_hom (X Y : Rep k G) : (lin_hom X.ρ Y.ρ).invariants ≃ₗ[k] (X ⟶ Y) :=
{ to_fun := λ f, ⟨f.val, λ g, (mem_invariants_iff_comm _ g).1 (f.property g)⟩,
map_add' := λ _ _, rfl,
map_smul' := λ _ _, rfl,
inv_fun := λ f, ⟨f.hom, λ g, (mem_invariants_iff_comm _ g).2 (f.comm g)⟩,
left_inv := λ _, by { ext, refl },
right_inv := λ _, by { ext, refl } }
end lin_hom
end representation
|