Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
13.8 kB
/-
Copyright (c) 2022 Antoine Labelle. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Antoine Labelle
-/
import algebra.module.basic
import algebra.module.linear_map
import algebra.monoid_algebra.basic
import linear_algebra.trace
import linear_algebra.dual
import linear_algebra.free_module.basic
/-!
# Monoid representations
This file introduces monoid representations and their characters and defines a few ways to construct
representations.
## Main definitions
* representation.representation
* representation.character
* representation.tprod
* representation.lin_hom
* represensation.dual
## Implementation notes
Representations of a monoid `G` on a `k`-module `V` are implemented as
homomorphisms `G →* (V →ₗ[k] V)`.
-/
open monoid_algebra (lift) (of)
open linear_map
section
variables (k G V : Type*) [comm_semiring k] [monoid G] [add_comm_monoid V] [module k V]
/--
A representation of `G` on the `k`-module `V` is an homomorphism `G →* (V →ₗ[k] V)`.
-/
abbreviation representation := G →* (V →ₗ[k] V)
end
namespace representation
section trivial
variables {k G V : Type*} [comm_semiring k] [monoid G] [add_comm_monoid V] [module k V]
/--
The trivial representation of `G` on the one-dimensional module `k`.
-/
def trivial : representation k G k := 1
@[simp]
lemma trivial_def (g : G) (v : k) : trivial g v = v := rfl
end trivial
section monoid_algebra
variables {k G V : Type*} [comm_semiring k] [monoid G] [add_comm_monoid V] [module k V]
variables (ρ : representation k G V)
/--
A `k`-linear representation of `G` on `V` can be thought of as
an algebra map from `monoid_algebra k G` into the `k`-linear endomorphisms of `V`.
-/
noncomputable def as_algebra_hom : monoid_algebra k G →ₐ[k] (module.End k V) :=
(lift k G _) ρ
lemma as_algebra_hom_def : as_algebra_hom ρ = (lift k G _) ρ :=
rfl
@[simp]
lemma as_algebra_hom_single (g : G) (r : k) :
(as_algebra_hom ρ (finsupp.single g r)) = r • ρ g :=
by simp only [as_algebra_hom_def, monoid_algebra.lift_single]
lemma as_algebra_hom_single_one (g : G):
(as_algebra_hom ρ (finsupp.single g 1)) = ρ g :=
by simp
lemma as_algebra_hom_of (g : G) :
(as_algebra_hom ρ (of k G g)) = ρ g :=
by simp only [monoid_algebra.of_apply, as_algebra_hom_single, one_smul]
/--
If `ρ : representation k G V`, then `ρ.as_module` is a type synonym for `V`,
which we equip with an instance `module (monoid_algebra k G) ρ.as_module`.
You should use `as_module_equiv : ρ.as_module ≃+ V` to translate terms.
-/
@[nolint unused_arguments, derive [add_comm_monoid, module (module.End k V)]]
def as_module (ρ : representation k G V) := V
instance : inhabited ρ.as_module := ⟨0
/--
A `k`-linear representation of `G` on `V` can be thought of as
a module over `monoid_algebra k G`.
-/
noncomputable instance as_module_module : module (monoid_algebra k G) ρ.as_module :=
module.comp_hom V (as_algebra_hom ρ).to_ring_hom
/--
The additive equivalence from the `module (monoid_algebra k G)` to the original vector space
of the representative.
This is just the identity, but it is helpful for typechecking and keeping track of instances.
-/
def as_module_equiv : ρ.as_module ≃+ V :=
add_equiv.refl _
@[simp]
lemma as_module_equiv_map_smul (r : monoid_algebra k G) (x : ρ.as_module) :
ρ.as_module_equiv (r • x) = ρ.as_algebra_hom r (ρ.as_module_equiv x) :=
rfl
@[simp]
lemma as_module_equiv_symm_map_smul (r : k) (x : V) :
ρ.as_module_equiv.symm (r • x) =
algebra_map k (monoid_algebra k G) r • (ρ.as_module_equiv.symm x) :=
begin
apply_fun ρ.as_module_equiv,
simp,
end
@[simp]
lemma as_module_equiv_symm_map_rho (g : G) (x : V) :
ρ.as_module_equiv.symm (ρ g x) = monoid_algebra.of k G g • (ρ.as_module_equiv.symm x) :=
begin
apply_fun ρ.as_module_equiv,
simp,
end
/--
Build a `representation k G M` from a `[module (monoid_algebra k G) M]`.
This version is not always what we want, as it relies on an existing `[module k M]`
instance, along with a `[is_scalar_tower k (monoid_algebra k G) M]` instance.
We remedy this below in `of_module`
(with the tradeoff that the representation is defined
only on a type synonym of the original module.)
-/
noncomputable
def of_module' (M : Type*) [add_comm_monoid M] [module k M] [module (monoid_algebra k G) M]
[is_scalar_tower k (monoid_algebra k G) M] : representation k G M :=
(monoid_algebra.lift k G (M →ₗ[k] M)).symm (algebra.lsmul k M)
section
variables (k G) (M : Type*) [add_comm_monoid M] [module (monoid_algebra k G) M]
/--
Build a `representation` from a `[module (monoid_algebra k G) M]`.
Note that the representation is built on `restrict_scalars k (monoid_algebra k G) M`,
rather than on `M` itself.
-/
noncomputable
def of_module :
representation k G (restrict_scalars k (monoid_algebra k G) M) :=
(monoid_algebra.lift k G
(restrict_scalars k (monoid_algebra k G) M →ₗ[k] restrict_scalars k (monoid_algebra k G) M)).symm
(restrict_scalars.lsmul k (monoid_algebra k G) M)
/-!
## `of_module` and `as_module` are inverses.
This requires a little care in both directions:
this is a categorical equivalence, not an isomorphism.
See `Rep.equivalence_Module_monoid_algebra` for the full statement.
Starting with `ρ : representation k G V`, converting to a module and back again
we have a `representation k G (restrict_scalars k (monoid_algebra k G) ρ.as_module)`.
To compare these, we use the composition of `restrict_scalars_add_equiv` and `ρ.as_module_equiv`.
Similarly, starting with `module (monoid_algebra k G) M`,
after we convert to a representation and back to a module,
we have `module (monoid_algebra k G) (restrict_scalars k (monoid_algebra k G) M)`.
-/
@[simp] lemma of_module_as_algebra_hom_apply_apply
(r : monoid_algebra k G) (m : restrict_scalars k (monoid_algebra k G) M) :
((((of_module k G M).as_algebra_hom) r) m) =
(restrict_scalars.add_equiv _ _ _).symm (r • restrict_scalars.add_equiv _ _ _ m) :=
begin
apply monoid_algebra.induction_on r,
{ intros g,
simp only [one_smul, monoid_algebra.lift_symm_apply, monoid_algebra.of_apply,
representation.as_algebra_hom_single, representation.of_module,
add_equiv.apply_eq_iff_eq, restrict_scalars.lsmul_apply_apply], },
{ intros f g fw gw,
simp only [fw, gw, map_add, add_smul, linear_map.add_apply], },
{ intros r f w,
simp only [w, alg_hom.map_smul, linear_map.smul_apply,
restrict_scalars.add_equiv_symm_map_smul_smul], }
end
@[simp]
lemma of_module_as_module_act (g : G) (x : restrict_scalars k (monoid_algebra k G) ρ.as_module) :
of_module k G (ρ.as_module) g x =
(restrict_scalars.add_equiv _ _ _).symm ((ρ.as_module_equiv).symm
(ρ g (ρ.as_module_equiv (restrict_scalars.add_equiv _ _ _ x)))) :=
begin
apply_fun restrict_scalars.add_equiv _ _ ρ.as_module using
(restrict_scalars.add_equiv _ _ _).injective,
dsimp [of_module, restrict_scalars.lsmul_apply_apply],
simp,
end
lemma smul_of_module_as_module (r : monoid_algebra k G)
(m : (of_module k G M).as_module) :
(restrict_scalars.add_equiv _ _ _) ((of_module k G M).as_module_equiv (r • m)) =
r • (restrict_scalars.add_equiv _ _ _) ((of_module k G M).as_module_equiv m) :=
by { dsimp, simp only [add_equiv.apply_symm_apply, of_module_as_algebra_hom_apply_apply], }
end
end monoid_algebra
section add_comm_group
variables {k G V : Type*} [comm_ring k] [monoid G] [I : add_comm_group V] [module k V]
variables (ρ : representation k G V)
instance : add_comm_group ρ.as_module := I
end add_comm_group
section mul_action
variables (k : Type*) [comm_semiring k] (G : Type*) [monoid G] (H : Type*) [mul_action G H]
/-- A `G`-action on `H` induces a representation `G →* End(k[H])` in the natural way. -/
noncomputable def of_mul_action : representation k G (H →₀ k) :=
{ to_fun := λ g, finsupp.lmap_domain k k ((•) g),
map_one' := by { ext x y, dsimp, simp },
map_mul' := λ x y, by { ext z w, simp [mul_smul] }}
variables {k G H}
lemma of_mul_action_def (g : G) : of_mul_action k G H g = finsupp.lmap_domain k k ((•) g) := rfl
end mul_action
section group
variables {k G V : Type*} [comm_semiring k] [group G] [add_comm_monoid V] [module k V]
variables (ρ : representation k G V)
@[simp] lemma of_mul_action_apply {H : Type*} [mul_action G H]
(g : G) (f : H →₀ k) (h : H) : of_mul_action k G H g f h = f (g⁻¹ • h) :=
begin
conv_lhs { rw ← smul_inv_smul g h, },
let h' := g⁻¹ • h,
change of_mul_action k G H g f (g • h') = f h',
have hg : function.injective ((•) g : HH), { intros h₁ h₂, simp, },
simp only [of_mul_action_def, finsupp.lmap_domain_apply, finsupp.map_domain_apply, hg],
end
lemma of_mul_action_self_smul_eq_mul
(x : monoid_algebra k G) (y : (of_mul_action k G G).as_module) :
x • y = (x * y : monoid_algebra k G) :=
x.induction_on (λ g, by show as_algebra_hom _ _ _ = _; ext; simp)
(λ x y hx hy, by simp only [hx, hy, add_mul, add_smul])
(λ r x hx, by show as_algebra_hom _ _ _ = _; simpa [←hx])
/-- If we equip `k[G]` with the `k`-linear `G`-representation induced by the left regular action of
`G` on itself, the resulting object is isomorphic as a `k[G]`-module to `k[G]` with its natural
`k[G]`-module structure. -/
@[simps] noncomputable def of_mul_action_self_as_module_equiv :
(of_mul_action k G G).as_module ≃ₗ[monoid_algebra k G] monoid_algebra k G :=
{ map_smul' := of_mul_action_self_smul_eq_mul, ..as_module_equiv _ }
/--
When `G` is a group, a `k`-linear representation of `G` on `V` can be thought of as
a group homomorphism from `G` into the invertible `k`-linear endomorphisms of `V`.
-/
def as_group_hom : G →* units (V →ₗ[k] V) :=
monoid_hom.to_hom_units ρ
lemma as_group_hom_apply (g : G) : ↑(as_group_hom ρ g) = ρ g :=
by simp only [as_group_hom, monoid_hom.coe_to_hom_units]
end group
section tensor_product
variables {k G V W : Type*} [comm_semiring k] [monoid G]
variables [add_comm_monoid V] [module k V] [add_comm_monoid W] [module k W]
variables (ρV : representation k G V) (ρW : representation k G W)
open_locale tensor_product
/--
Given representations of `G` on `V` and `W`, there is a natural representation of `G` on their
tensor product `V ⊗[k] W`.
-/
def tprod : representation k G (V ⊗[k] W) :=
{ to_fun := λ g, tensor_product.map (ρV g) (ρW g),
map_one' := by simp only [map_one, tensor_product.map_one],
map_mul' := λ g h, by simp only [map_mul, tensor_product.map_mul] }
local notation ρV ` ⊗ ` ρW := tprod ρV ρW
@[simp]
lemma tprod_apply (g : G) : (ρV ⊗ ρW) g = tensor_product.map (ρV g) (ρW g) := rfl
lemma smul_tprod_one_as_module (r : monoid_algebra k G) (x : V) (y : W) :
(r • (x ⊗ₜ y) : (ρV.tprod 1).as_module) = (r • x : ρV.as_module) ⊗ₜ y :=
begin
show as_algebra_hom _ _ _ = as_algebra_hom _ _ _ ⊗ₜ _,
simp only [as_algebra_hom_def, monoid_algebra.lift_apply,
tprod_apply, monoid_hom.one_apply, linear_map.finsupp_sum_apply,
linear_map.smul_apply, tensor_product.map_tmul, linear_map.one_apply],
simp only [finsupp.sum, tensor_product.sum_tmul],
refl,
end
lemma smul_one_tprod_as_module (r : monoid_algebra k G) (x : V) (y : W) :
(r • (x ⊗ₜ y) : ((1 : representation k G V).tprod ρW).as_module) = x ⊗ₜ (r • y : ρW.as_module) :=
begin
show as_algebra_hom _ _ _ = _ ⊗ₜ as_algebra_hom _ _ _,
simp only [as_algebra_hom_def, monoid_algebra.lift_apply,
tprod_apply, monoid_hom.one_apply, linear_map.finsupp_sum_apply,
linear_map.smul_apply, tensor_product.map_tmul, linear_map.one_apply],
simp only [finsupp.sum, tensor_product.tmul_sum, tensor_product.tmul_smul],
end
end tensor_product
section linear_hom
variables {k G V W : Type*} [comm_semiring k] [group G]
variables [add_comm_monoid V] [module k V] [add_comm_monoid W] [module k W]
variables (ρV : representation k G V) (ρW : representation k G W)
/--
Given representations of `G` on `V` and `W`, there is a natural representation of `G` on the
module `V →ₗ[k] W`, where `G` acts by conjugation.
-/
def lin_hom : representation k G (V →ₗ[k] W) :=
{ to_fun := λ g,
{ to_fun := λ f, (ρW g) ∘ₗ f ∘ₗ (ρV g⁻¹),
map_add' := λ f₁ f₂, by simp_rw [add_comp, comp_add],
map_smul' := λ r f, by simp_rw [ring_hom.id_apply, smul_comp, comp_smul]},
map_one' := linear_map.ext $ λ x,
by simp_rw [coe_mk, inv_one, map_one, one_apply, one_eq_id, comp_id, id_comp],
map_mul' := λ g h, linear_map.ext $ λ x,
by simp_rw [coe_mul, coe_mk, function.comp_apply, mul_inv_rev, map_mul, mul_eq_comp,
comp_assoc ]}
@[simp]
lemma lin_hom_apply (g : G) (f : V →ₗ[k] W) : (lin_hom ρV ρW) g f = (ρW g) ∘ₗ f ∘ₗ (ρV g⁻¹) := rfl
/--
The dual of a representation `ρ` of `G` on a module `V`, given by `(dual ρ) g f = f ∘ₗ (ρ g⁻¹)`,
where `f : module.dual k V`.
-/
def dual : representation k G (module.dual k V) :=
{ to_fun := λ g,
{ to_fun := λ f, f ∘ₗ (ρV g⁻¹),
map_add' := λ f₁ f₂, by simp only [add_comp],
map_smul' := λ r f,
by {ext, simp only [coe_comp, function.comp_app, smul_apply, ring_hom.id_apply]} },
map_one' :=
by {ext, simp only [coe_comp, function.comp_app, map_one, inv_one, coe_mk, one_apply]},
map_mul' := λ g h,
by {ext, simp only [coe_comp, function.comp_app, mul_inv_rev, map_mul, coe_mk, mul_apply]}}
@[simp]
lemma dual_apply (g : G) : (dual ρV) g = module.dual.transpose (ρV g⁻¹) := rfl
lemma dual_tensor_hom_comm (g : G) :
(dual_tensor_hom k V W) ∘ₗ (tensor_product.map (ρV.dual g) (ρW g)) =
(lin_hom ρV ρW) g ∘ₗ (dual_tensor_hom k V W) :=
begin
ext, simp [module.dual.transpose_apply],
end
end linear_hom
end representation