Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2017 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Yaël Dillies | |
-/ | |
import order.partial_sups | |
/-! | |
# Consecutive differences of sets | |
This file defines the way to make a sequence of elements into a sequence of disjoint elements with | |
the same partial sups. | |
For a sequence `f : ℕ → α`, this new sequence will be `f 0`, `f 1 \ f 0`, `f 2 \ (f 0 ⊔ f 1)`. | |
It is actually unique, as `disjointed_unique` shows. | |
## Main declarations | |
* `disjointed f`: The sequence `f 0`, `f 1 \ f 0`, `f 2 \ (f 0 ⊔ f 1)`, .... | |
* `partial_sups_disjointed`: `disjointed f` has the same partial sups as `f`. | |
* `disjoint_disjointed`: The elements of `disjointed f` are pairwise disjoint. | |
* `disjointed_unique`: `disjointed f` is the only pairwise disjoint sequence having the same partial | |
sups as `f`. | |
* `supr_disjointed`: `disjointed f` has the same supremum as `f`. Limiting case of | |
`partial_sups_disjointed`. | |
We also provide set notation variants of some lemmas. | |
## TODO | |
Find a useful statement of `disjointed_rec_succ`. | |
One could generalize `disjointed` to any locally finite bot preorder domain, in place of `ℕ`. | |
Related to the TODO in the module docstring of `order.partial_sups`. | |
-/ | |
variables {α β : Type*} | |
section generalized_boolean_algebra | |
variables [generalized_boolean_algebra α] | |
/-- If `f : ℕ → α` is a sequence of elements, then `disjointed f` is the sequence formed by | |
subtracting each element from the nexts. This is the unique disjoint sequence whose partial sups | |
are the same as the original sequence. -/ | |
def disjointed (f : ℕ → α) : ℕ → α | |
| 0 := f 0 | |
| (n + 1) := f (n + 1) \ (partial_sups f n) | |
@[simp] lemma disjointed_zero (f : ℕ → α) : disjointed f 0 = f 0 := rfl | |
lemma disjointed_succ (f : ℕ → α) (n : ℕ) : | |
disjointed f (n + 1) = f (n + 1) \ (partial_sups f n) := | |
rfl | |
lemma disjointed_le_id : disjointed ≤ (id : (ℕ → α) → ℕ → α) := | |
begin | |
rintro f n, | |
cases n, | |
{ refl }, | |
{ exact sdiff_le } | |
end | |
lemma disjointed_le (f : ℕ → α) : disjointed f ≤ f := disjointed_le_id f | |
lemma disjoint_disjointed (f : ℕ → α) : pairwise (disjoint on disjointed f) := | |
begin | |
refine (symmetric.pairwise_on disjoint.symm _).2 (λ m n h, _), | |
cases n, | |
{ exact (nat.not_lt_zero _ h).elim }, | |
exact disjoint_sdiff_self_right.mono_left ((disjointed_le f m).trans | |
(le_partial_sups_of_le f (nat.lt_add_one_iff.1 h))), | |
end | |
/-- An induction principle for `disjointed`. To define/prove something on `disjointed f n`, it's | |
enough to define/prove it for `f n` and being able to extend through diffs. -/ | |
def disjointed_rec {f : ℕ → α} {p : α → Sort*} (hdiff : ∀ ⦃t i⦄, p t → p (t \ f i)) : | |
∀ ⦃n⦄, p (f n) → p (disjointed f n) | |
| 0 := id | |
| (n + 1) := λ h, | |
begin | |
suffices H : ∀ k, p (f (n + 1) \ partial_sups f k), | |
{ exact H n }, | |
rintro k, | |
induction k with k ih, | |
{ exact hdiff h }, | |
rw [partial_sups_succ, ←sdiff_sdiff_left], | |
exact hdiff ih, | |
end | |
@[simp] lemma disjointed_rec_zero {f : ℕ → α} {p : α → Sort*} (hdiff : ∀ ⦃t i⦄, p t → p (t \ f i)) | |
(h₀ : p (f 0)) : | |
disjointed_rec hdiff h₀ = h₀ := rfl | |
-- TODO: Find a useful statement of `disjointed_rec_succ`. | |
lemma monotone.disjointed_eq {f : ℕ → α} (hf : monotone f) (n : ℕ) : | |
disjointed f (n + 1) = f (n + 1) \ f n := | |
by rw [disjointed_succ, hf.partial_sups_eq] | |
@[simp] lemma partial_sups_disjointed (f : ℕ → α) : | |
partial_sups (disjointed f) = partial_sups f := | |
begin | |
ext n, | |
induction n with k ih, | |
{ rw [partial_sups_zero, partial_sups_zero, disjointed_zero] }, | |
{ rw [partial_sups_succ, partial_sups_succ, disjointed_succ, ih, sup_sdiff_self_right] } | |
end | |
/-- `disjointed f` is the unique sequence that is pairwise disjoint and has the same partial sups | |
as `f`. -/ | |
lemma disjointed_unique {f d : ℕ → α} (hdisj : pairwise (disjoint on d)) | |
(hsups : partial_sups d = partial_sups f) : d = disjointed f := | |
begin | |
ext n, | |
cases n, | |
{ rw [←partial_sups_zero d, hsups, partial_sups_zero, disjointed_zero] }, | |
suffices h : d n.succ = partial_sups d n.succ \ partial_sups d n, | |
{ rw [h, hsups, partial_sups_succ, disjointed_succ, sup_sdiff, sdiff_self, bot_sup_eq] }, | |
rw [partial_sups_succ, sup_sdiff, sdiff_self, bot_sup_eq, eq_comm, sdiff_eq_self_iff_disjoint], | |
suffices h : ∀ m ≤ n, disjoint (partial_sups d m) (d n.succ), | |
{ exact h n le_rfl }, | |
rintro m hm, | |
induction m with m ih, | |
{ exact hdisj _ _ (nat.succ_ne_zero _).symm }, | |
rw [partial_sups_succ, disjoint_iff, inf_sup_right, sup_eq_bot_iff, ←disjoint_iff, ←disjoint_iff], | |
exact ⟨ih (nat.le_of_succ_le hm), hdisj _ _ (nat.lt_succ_of_le hm).ne⟩, | |
end | |
end generalized_boolean_algebra | |
section complete_boolean_algebra | |
variables [complete_boolean_algebra α] | |
lemma supr_disjointed (f : ℕ → α) : (⨆ n, disjointed f n) = (⨆ n, f n) := | |
supr_eq_supr_of_partial_sups_eq_partial_sups (partial_sups_disjointed f) | |
lemma disjointed_eq_inf_compl (f : ℕ → α) (n : ℕ) : | |
disjointed f n = f n ⊓ (⨅ i < n, (f i)ᶜ) := | |
begin | |
cases n, | |
{ rw [disjointed_zero, eq_comm, inf_eq_left], | |
simp_rw le_infi_iff, | |
exact λ i hi, (i.not_lt_zero hi).elim }, | |
simp_rw [disjointed_succ, partial_sups_eq_bsupr, sdiff_eq, compl_supr], | |
congr, | |
ext i, | |
rw nat.lt_succ_iff, | |
end | |
end complete_boolean_algebra | |
/-! ### Set notation variants of lemmas -/ | |
lemma disjointed_subset (f : ℕ → set α) (n : ℕ) : disjointed f n ⊆ f n := | |
disjointed_le f n | |
lemma Union_disjointed {f : ℕ → set α} : (⋃ n, disjointed f n) = (⋃ n, f n) := | |
supr_disjointed f | |
lemma disjointed_eq_inter_compl (f : ℕ → set α) (n : ℕ) : | |
disjointed f n = f n ∩ (⋂ i < n, (f i)ᶜ) := | |
disjointed_eq_inf_compl f n | |
lemma preimage_find_eq_disjointed (s : ℕ → set α) (H : ∀ x, ∃ n, x ∈ s n) | |
[∀ x n, decidable (x ∈ s n)] (n : ℕ) : | |
(λ x, nat.find (H x)) ⁻¹' {n} = disjointed s n := | |
by { ext x, simp [nat.find_eq_iff, disjointed_eq_inter_compl] } | |