Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,090 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Yaël Dillies
-/
import order.partial_sups
/-!
# Consecutive differences of sets
This file defines the way to make a sequence of elements into a sequence of disjoint elements with
the same partial sups.
For a sequence `f : ℕ → α`, this new sequence will be `f 0`, `f 1 \ f 0`, `f 2 \ (f 0 ⊔ f 1)`.
It is actually unique, as `disjointed_unique` shows.
## Main declarations
* `disjointed f`: The sequence `f 0`, `f 1 \ f 0`, `f 2 \ (f 0 ⊔ f 1)`, ....
* `partial_sups_disjointed`: `disjointed f` has the same partial sups as `f`.
* `disjoint_disjointed`: The elements of `disjointed f` are pairwise disjoint.
* `disjointed_unique`: `disjointed f` is the only pairwise disjoint sequence having the same partial
sups as `f`.
* `supr_disjointed`: `disjointed f` has the same supremum as `f`. Limiting case of
`partial_sups_disjointed`.
We also provide set notation variants of some lemmas.
## TODO
Find a useful statement of `disjointed_rec_succ`.
One could generalize `disjointed` to any locally finite bot preorder domain, in place of `ℕ`.
Related to the TODO in the module docstring of `order.partial_sups`.
-/
variables {α β : Type*}
section generalized_boolean_algebra
variables [generalized_boolean_algebra α]
/-- If `f : ℕ → α` is a sequence of elements, then `disjointed f` is the sequence formed by
subtracting each element from the nexts. This is the unique disjoint sequence whose partial sups
are the same as the original sequence. -/
def disjointed (f : ℕ → α) : ℕ → α
| 0 := f 0
| (n + 1) := f (n + 1) \ (partial_sups f n)
@[simp] lemma disjointed_zero (f : ℕ → α) : disjointed f 0 = f 0 := rfl
lemma disjointed_succ (f : ℕ → α) (n : ℕ) :
disjointed f (n + 1) = f (n + 1) \ (partial_sups f n) :=
rfl
lemma disjointed_le_id : disjointed ≤ (id : (ℕ → α) → ℕ → α) :=
begin
rintro f n,
cases n,
{ refl },
{ exact sdiff_le }
end
lemma disjointed_le (f : ℕ → α) : disjointed f ≤ f := disjointed_le_id f
lemma disjoint_disjointed (f : ℕ → α) : pairwise (disjoint on disjointed f) :=
begin
refine (symmetric.pairwise_on disjoint.symm _).2 (λ m n h, _),
cases n,
{ exact (nat.not_lt_zero _ h).elim },
exact disjoint_sdiff_self_right.mono_left ((disjointed_le f m).trans
(le_partial_sups_of_le f (nat.lt_add_one_iff.1 h))),
end
/-- An induction principle for `disjointed`. To define/prove something on `disjointed f n`, it's
enough to define/prove it for `f n` and being able to extend through diffs. -/
def disjointed_rec {f : ℕ → α} {p : α → Sort*} (hdiff : ∀ ⦃t i⦄, p t → p (t \ f i)) :
∀ ⦃n⦄, p (f n) → p (disjointed f n)
| 0 := id
| (n + 1) := λ h,
begin
suffices H : ∀ k, p (f (n + 1) \ partial_sups f k),
{ exact H n },
rintro k,
induction k with k ih,
{ exact hdiff h },
rw [partial_sups_succ, ←sdiff_sdiff_left],
exact hdiff ih,
end
@[simp] lemma disjointed_rec_zero {f : ℕ → α} {p : α → Sort*} (hdiff : ∀ ⦃t i⦄, p t → p (t \ f i))
(h₀ : p (f 0)) :
disjointed_rec hdiff h₀ = h₀ := rfl
-- TODO: Find a useful statement of `disjointed_rec_succ`.
lemma monotone.disjointed_eq {f : ℕ → α} (hf : monotone f) (n : ℕ) :
disjointed f (n + 1) = f (n + 1) \ f n :=
by rw [disjointed_succ, hf.partial_sups_eq]
@[simp] lemma partial_sups_disjointed (f : ℕ → α) :
partial_sups (disjointed f) = partial_sups f :=
begin
ext n,
induction n with k ih,
{ rw [partial_sups_zero, partial_sups_zero, disjointed_zero] },
{ rw [partial_sups_succ, partial_sups_succ, disjointed_succ, ih, sup_sdiff_self_right] }
end
/-- `disjointed f` is the unique sequence that is pairwise disjoint and has the same partial sups
as `f`. -/
lemma disjointed_unique {f d : ℕ → α} (hdisj : pairwise (disjoint on d))
(hsups : partial_sups d = partial_sups f) : d = disjointed f :=
begin
ext n,
cases n,
{ rw [←partial_sups_zero d, hsups, partial_sups_zero, disjointed_zero] },
suffices h : d n.succ = partial_sups d n.succ \ partial_sups d n,
{ rw [h, hsups, partial_sups_succ, disjointed_succ, sup_sdiff, sdiff_self, bot_sup_eq] },
rw [partial_sups_succ, sup_sdiff, sdiff_self, bot_sup_eq, eq_comm, sdiff_eq_self_iff_disjoint],
suffices h : ∀ m ≤ n, disjoint (partial_sups d m) (d n.succ),
{ exact h n le_rfl },
rintro m hm,
induction m with m ih,
{ exact hdisj _ _ (nat.succ_ne_zero _).symm },
rw [partial_sups_succ, disjoint_iff, inf_sup_right, sup_eq_bot_iff, ←disjoint_iff, ←disjoint_iff],
exact ⟨ih (nat.le_of_succ_le hm), hdisj _ _ (nat.lt_succ_of_le hm).ne⟩,
end
end generalized_boolean_algebra
section complete_boolean_algebra
variables [complete_boolean_algebra α]
lemma supr_disjointed (f : ℕ → α) : (⨆ n, disjointed f n) = (⨆ n, f n) :=
supr_eq_supr_of_partial_sups_eq_partial_sups (partial_sups_disjointed f)
lemma disjointed_eq_inf_compl (f : ℕ → α) (n : ℕ) :
disjointed f n = f n ⊓ (⨅ i < n, (f i)ᶜ) :=
begin
cases n,
{ rw [disjointed_zero, eq_comm, inf_eq_left],
simp_rw le_infi_iff,
exact λ i hi, (i.not_lt_zero hi).elim },
simp_rw [disjointed_succ, partial_sups_eq_bsupr, sdiff_eq, compl_supr],
congr,
ext i,
rw nat.lt_succ_iff,
end
end complete_boolean_algebra
/-! ### Set notation variants of lemmas -/
lemma disjointed_subset (f : ℕ → set α) (n : ℕ) : disjointed f n ⊆ f n :=
disjointed_le f n
lemma Union_disjointed {f : ℕ → set α} : (⋃ n, disjointed f n) = (⋃ n, f n) :=
supr_disjointed f
lemma disjointed_eq_inter_compl (f : ℕ → set α) (n : ℕ) :
disjointed f n = f n ∩ (⋂ i < n, (f i)ᶜ) :=
disjointed_eq_inf_compl f n
lemma preimage_find_eq_disjointed (s : ℕ → set α) (H : ∀ x, ∃ n, x ∈ s n)
[∀ x n, decidable (x ∈ s n)] (n : ℕ) :
(λ x, nat.find (H x)) ⁻¹' {n} = disjointed s n :=
by { ext x, simp [nat.find_eq_iff, disjointed_eq_inter_compl] }
|