Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,090 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Yaël Dillies
-/
import order.partial_sups

/-!
# Consecutive differences of sets

This file defines the way to make a sequence of elements into a sequence of disjoint elements with
the same partial sups.

For a sequence `f : ℕ → α`, this new sequence will be `f 0`, `f 1 \ f 0`, `f 2 \ (f 0 ⊔ f 1)`.
It is actually unique, as `disjointed_unique` shows.

## Main declarations

* `disjointed f`: The sequence `f 0`, `f 1 \ f 0`, `f 2 \ (f 0 ⊔ f 1)`, ....
* `partial_sups_disjointed`: `disjointed f` has the same partial sups as `f`.
* `disjoint_disjointed`: The elements of `disjointed f` are pairwise disjoint.
* `disjointed_unique`: `disjointed f` is the only pairwise disjoint sequence having the same partial
  sups as `f`.
* `supr_disjointed`: `disjointed f` has the same supremum as `f`. Limiting case of
  `partial_sups_disjointed`.

We also provide set notation variants of some lemmas.

## TODO

Find a useful statement of `disjointed_rec_succ`.

One could generalize `disjointed` to any locally finite bot preorder domain, in place of `ℕ`.
Related to the TODO in the module docstring of `order.partial_sups`.
-/

variables {α β : Type*}

section generalized_boolean_algebra
variables [generalized_boolean_algebra α]

/-- If `f : ℕ → α` is a sequence of elements, then `disjointed f` is the sequence formed by
subtracting each element from the nexts. This is the unique disjoint sequence whose partial sups
are the same as the original sequence. -/
def disjointed (f : ℕ → α) : ℕ → α
| 0       := f 0
| (n + 1) := f (n + 1) \ (partial_sups f n)

@[simp] lemma disjointed_zero (f : ℕ → α) : disjointed f 0 = f 0 := rfl

lemma disjointed_succ (f : ℕ → α) (n : ℕ) :
  disjointed f (n + 1) = f (n + 1) \ (partial_sups f n) :=
rfl

lemma disjointed_le_id : disjointed ≤ (id : (ℕ → α) → ℕ → α) :=
begin
  rintro f n,
  cases n,
  { refl },
  { exact sdiff_le }
end

lemma disjointed_le (f : ℕ → α) : disjointed f ≤ f := disjointed_le_id f

lemma disjoint_disjointed (f : ℕ → α) : pairwise (disjoint on disjointed f) :=
begin
  refine (symmetric.pairwise_on disjoint.symm _).2 (λ m n h, _),
  cases n,
  { exact (nat.not_lt_zero _ h).elim },
  exact disjoint_sdiff_self_right.mono_left ((disjointed_le f m).trans
    (le_partial_sups_of_le f (nat.lt_add_one_iff.1 h))),
end

/-- An induction principle for `disjointed`. To define/prove something on `disjointed f n`, it's
enough to define/prove it for `f n` and being able to extend through diffs. -/
def disjointed_rec {f : ℕ → α} {p : α → Sort*} (hdiff : ∀ ⦃t i⦄, p t → p (t \ f i)) :
  ∀ ⦃n⦄, p (f n) → p (disjointed f n)
| 0       := id
| (n + 1) := λ h,
  begin
    suffices H : ∀ k, p (f (n + 1) \ partial_sups f k),
    { exact H n },
    rintro k,
    induction k with k ih,
    { exact hdiff h },
    rw [partial_sups_succ, ←sdiff_sdiff_left],
    exact hdiff ih,
  end

@[simp] lemma disjointed_rec_zero {f : ℕ → α} {p : α → Sort*} (hdiff : ∀ ⦃t i⦄, p t → p (t \ f i))
  (h₀ : p (f 0)) :
  disjointed_rec hdiff h₀ = h₀ := rfl

-- TODO: Find a useful statement of `disjointed_rec_succ`.

lemma monotone.disjointed_eq {f : ℕ → α} (hf : monotone f) (n : ℕ) :
  disjointed f (n + 1) = f (n + 1) \ f n :=
by rw [disjointed_succ, hf.partial_sups_eq]

@[simp] lemma partial_sups_disjointed (f : ℕ → α) :
  partial_sups (disjointed f) = partial_sups f :=
begin
  ext n,
  induction n with k ih,
  { rw [partial_sups_zero, partial_sups_zero, disjointed_zero] },
  { rw [partial_sups_succ, partial_sups_succ, disjointed_succ, ih, sup_sdiff_self_right] }
end

/-- `disjointed f` is the unique sequence that is pairwise disjoint and has the same partial sups
as `f`. -/
lemma disjointed_unique {f d : ℕ → α} (hdisj : pairwise (disjoint on d))
  (hsups : partial_sups d = partial_sups f) : d = disjointed f :=
begin
  ext n,
  cases n,
  { rw [←partial_sups_zero d, hsups, partial_sups_zero, disjointed_zero] },
  suffices h : d n.succ = partial_sups d n.succ \ partial_sups d n,
  { rw [h, hsups, partial_sups_succ, disjointed_succ, sup_sdiff, sdiff_self, bot_sup_eq] },
  rw [partial_sups_succ, sup_sdiff, sdiff_self, bot_sup_eq, eq_comm, sdiff_eq_self_iff_disjoint],
  suffices h : ∀ m ≤ n, disjoint (partial_sups d m) (d n.succ),
  { exact h n le_rfl },
  rintro m hm,
  induction m with m ih,
  { exact hdisj _ _ (nat.succ_ne_zero _).symm },
  rw [partial_sups_succ, disjoint_iff, inf_sup_right, sup_eq_bot_iff, ←disjoint_iff, ←disjoint_iff],
  exact ⟨ih (nat.le_of_succ_le hm), hdisj _ _ (nat.lt_succ_of_le hm).ne⟩,
end

end generalized_boolean_algebra

section complete_boolean_algebra
variables [complete_boolean_algebra α]

lemma supr_disjointed (f : ℕ → α) : (⨆ n, disjointed f n) = (⨆ n, f n) :=
supr_eq_supr_of_partial_sups_eq_partial_sups (partial_sups_disjointed f)

lemma disjointed_eq_inf_compl (f : ℕ → α) (n : ℕ) :
  disjointed f n = f n ⊓ (⨅ i < n, (f i)ᶜ) :=
begin
  cases n,
  { rw [disjointed_zero, eq_comm, inf_eq_left],
    simp_rw le_infi_iff,
    exact λ i hi, (i.not_lt_zero hi).elim },
  simp_rw [disjointed_succ, partial_sups_eq_bsupr, sdiff_eq, compl_supr],
  congr,
  ext i,
  rw nat.lt_succ_iff,
end

end complete_boolean_algebra

/-! ### Set notation variants of lemmas -/

lemma disjointed_subset (f : ℕ → set α) (n : ℕ) : disjointed f n ⊆ f n :=
disjointed_le f n

lemma Union_disjointed {f : ℕ → set α} : (⋃ n, disjointed f n) = (⋃ n, f n) :=
supr_disjointed f

lemma disjointed_eq_inter_compl (f : ℕ → set α) (n : ℕ) :
  disjointed f n = f n ∩ (⋂ i < n, (f i)ᶜ) :=
disjointed_eq_inf_compl f n

lemma preimage_find_eq_disjointed (s : ℕ → set α) (H : ∀ x, ∃ n, x ∈ s n)
  [∀ x n, decidable (x ∈ s n)] (n : ℕ) :
  (λ x, nat.find (H x)) ⁻¹' {n} = disjointed s n :=
by { ext x, simp [nat.find_eq_iff, disjointed_eq_inter_compl] }