/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Yaël Dillies -/ import order.partial_sups /-! # Consecutive differences of sets This file defines the way to make a sequence of elements into a sequence of disjoint elements with the same partial sups. For a sequence `f : ℕ → α`, this new sequence will be `f 0`, `f 1 \ f 0`, `f 2 \ (f 0 ⊔ f 1)`. It is actually unique, as `disjointed_unique` shows. ## Main declarations * `disjointed f`: The sequence `f 0`, `f 1 \ f 0`, `f 2 \ (f 0 ⊔ f 1)`, .... * `partial_sups_disjointed`: `disjointed f` has the same partial sups as `f`. * `disjoint_disjointed`: The elements of `disjointed f` are pairwise disjoint. * `disjointed_unique`: `disjointed f` is the only pairwise disjoint sequence having the same partial sups as `f`. * `supr_disjointed`: `disjointed f` has the same supremum as `f`. Limiting case of `partial_sups_disjointed`. We also provide set notation variants of some lemmas. ## TODO Find a useful statement of `disjointed_rec_succ`. One could generalize `disjointed` to any locally finite bot preorder domain, in place of `ℕ`. Related to the TODO in the module docstring of `order.partial_sups`. -/ variables {α β : Type*} section generalized_boolean_algebra variables [generalized_boolean_algebra α] /-- If `f : ℕ → α` is a sequence of elements, then `disjointed f` is the sequence formed by subtracting each element from the nexts. This is the unique disjoint sequence whose partial sups are the same as the original sequence. -/ def disjointed (f : ℕ → α) : ℕ → α | 0 := f 0 | (n + 1) := f (n + 1) \ (partial_sups f n) @[simp] lemma disjointed_zero (f : ℕ → α) : disjointed f 0 = f 0 := rfl lemma disjointed_succ (f : ℕ → α) (n : ℕ) : disjointed f (n + 1) = f (n + 1) \ (partial_sups f n) := rfl lemma disjointed_le_id : disjointed ≤ (id : (ℕ → α) → ℕ → α) := begin rintro f n, cases n, { refl }, { exact sdiff_le } end lemma disjointed_le (f : ℕ → α) : disjointed f ≤ f := disjointed_le_id f lemma disjoint_disjointed (f : ℕ → α) : pairwise (disjoint on disjointed f) := begin refine (symmetric.pairwise_on disjoint.symm _).2 (λ m n h, _), cases n, { exact (nat.not_lt_zero _ h).elim }, exact disjoint_sdiff_self_right.mono_left ((disjointed_le f m).trans (le_partial_sups_of_le f (nat.lt_add_one_iff.1 h))), end /-- An induction principle for `disjointed`. To define/prove something on `disjointed f n`, it's enough to define/prove it for `f n` and being able to extend through diffs. -/ def disjointed_rec {f : ℕ → α} {p : α → Sort*} (hdiff : ∀ ⦃t i⦄, p t → p (t \ f i)) : ∀ ⦃n⦄, p (f n) → p (disjointed f n) | 0 := id | (n + 1) := λ h, begin suffices H : ∀ k, p (f (n + 1) \ partial_sups f k), { exact H n }, rintro k, induction k with k ih, { exact hdiff h }, rw [partial_sups_succ, ←sdiff_sdiff_left], exact hdiff ih, end @[simp] lemma disjointed_rec_zero {f : ℕ → α} {p : α → Sort*} (hdiff : ∀ ⦃t i⦄, p t → p (t \ f i)) (h₀ : p (f 0)) : disjointed_rec hdiff h₀ = h₀ := rfl -- TODO: Find a useful statement of `disjointed_rec_succ`. lemma monotone.disjointed_eq {f : ℕ → α} (hf : monotone f) (n : ℕ) : disjointed f (n + 1) = f (n + 1) \ f n := by rw [disjointed_succ, hf.partial_sups_eq] @[simp] lemma partial_sups_disjointed (f : ℕ → α) : partial_sups (disjointed f) = partial_sups f := begin ext n, induction n with k ih, { rw [partial_sups_zero, partial_sups_zero, disjointed_zero] }, { rw [partial_sups_succ, partial_sups_succ, disjointed_succ, ih, sup_sdiff_self_right] } end /-- `disjointed f` is the unique sequence that is pairwise disjoint and has the same partial sups as `f`. -/ lemma disjointed_unique {f d : ℕ → α} (hdisj : pairwise (disjoint on d)) (hsups : partial_sups d = partial_sups f) : d = disjointed f := begin ext n, cases n, { rw [←partial_sups_zero d, hsups, partial_sups_zero, disjointed_zero] }, suffices h : d n.succ = partial_sups d n.succ \ partial_sups d n, { rw [h, hsups, partial_sups_succ, disjointed_succ, sup_sdiff, sdiff_self, bot_sup_eq] }, rw [partial_sups_succ, sup_sdiff, sdiff_self, bot_sup_eq, eq_comm, sdiff_eq_self_iff_disjoint], suffices h : ∀ m ≤ n, disjoint (partial_sups d m) (d n.succ), { exact h n le_rfl }, rintro m hm, induction m with m ih, { exact hdisj _ _ (nat.succ_ne_zero _).symm }, rw [partial_sups_succ, disjoint_iff, inf_sup_right, sup_eq_bot_iff, ←disjoint_iff, ←disjoint_iff], exact ⟨ih (nat.le_of_succ_le hm), hdisj _ _ (nat.lt_succ_of_le hm).ne⟩, end end generalized_boolean_algebra section complete_boolean_algebra variables [complete_boolean_algebra α] lemma supr_disjointed (f : ℕ → α) : (⨆ n, disjointed f n) = (⨆ n, f n) := supr_eq_supr_of_partial_sups_eq_partial_sups (partial_sups_disjointed f) lemma disjointed_eq_inf_compl (f : ℕ → α) (n : ℕ) : disjointed f n = f n ⊓ (⨅ i < n, (f i)ᶜ) := begin cases n, { rw [disjointed_zero, eq_comm, inf_eq_left], simp_rw le_infi_iff, exact λ i hi, (i.not_lt_zero hi).elim }, simp_rw [disjointed_succ, partial_sups_eq_bsupr, sdiff_eq, compl_supr], congr, ext i, rw nat.lt_succ_iff, end end complete_boolean_algebra /-! ### Set notation variants of lemmas -/ lemma disjointed_subset (f : ℕ → set α) (n : ℕ) : disjointed f n ⊆ f n := disjointed_le f n lemma Union_disjointed {f : ℕ → set α} : (⋃ n, disjointed f n) = (⋃ n, f n) := supr_disjointed f lemma disjointed_eq_inter_compl (f : ℕ → set α) (n : ℕ) : disjointed f n = f n ∩ (⋂ i < n, (f i)ᶜ) := disjointed_eq_inf_compl f n lemma preimage_find_eq_disjointed (s : ℕ → set α) (H : ∀ x, ∃ n, x ∈ s n) [∀ x n, decidable (x ∈ s n)] (n : ℕ) : (λ x, nat.find (H x)) ⁻¹' {n} = disjointed s n := by { ext x, simp [nat.find_eq_iff, disjointed_eq_inter_compl] }