Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Aaron Anderson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson | |
-/ | |
import model_theory.ultraproducts | |
import model_theory.bundled | |
import model_theory.skolem | |
/-! | |
# First-Order Satisfiability | |
This file deals with the satisfiability of first-order theories, as well as equivalence over them. | |
## Main Definitions | |
* `first_order.language.Theory.is_satisfiable`: `T.is_satisfiable` indicates that `T` has a nonempty | |
model. | |
* `first_order.language.Theory.is_finitely_satisfiable`: `T.is_finitely_satisfiable` indicates that | |
every finite subset of `T` is satisfiable. | |
* `first_order.language.Theory.is_complete`: `T.is_complete` indicates that `T` is satisfiable and | |
models each sentence or its negation. | |
* `first_order.language.Theory.semantically_equivalent`: `T.semantically_equivalent φ ψ` indicates | |
that `φ` and `ψ` are equivalent formulas or sentences in models of `T`. | |
* `cardinal.categorical`: A theory is `κ`-categorical if all models of size `κ` are isomorphic. | |
## Main Results | |
* The Compactness Theorem, `first_order.language.Theory.is_satisfiable_iff_is_finitely_satisfiable`, | |
shows that a theory is satisfiable iff it is finitely satisfiable. | |
* `first_order.language.complete_theory.is_complete`: The complete theory of a structure is | |
complete. | |
* `first_order.language.Theory.exists_large_model_of_infinite_model` shows that any theory with an | |
infinite model has arbitrarily large models. | |
* `first_order.language.Theory.exists_elementary_embedding_card_eq`: The Upward Löwenheim–Skolem | |
Theorem: If `κ` is a cardinal greater than the cardinalities of `L` and an infinite `L`-structure | |
`M`, then `M` has an elementary extension of cardinality `κ`. | |
## Implementation Details | |
* Satisfiability of an `L.Theory` `T` is defined in the minimal universe containing all the symbols | |
of `L`. By Löwenheim-Skolem, this is equivalent to satisfiability in any universe. | |
-/ | |
universes u v w w' | |
open cardinal category_theory | |
open_locale cardinal first_order | |
namespace first_order | |
namespace language | |
variables {L : language.{u v}} {T : L.Theory} {α : Type w} {n : ℕ} | |
namespace Theory | |
variable (T) | |
/-- A theory is satisfiable if a structure models it. -/ | |
def is_satisfiable : Prop := nonempty (Model.{u v (max u v)} T) | |
/-- A theory is finitely satisfiable if all of its finite subtheories are satisfiable. -/ | |
def is_finitely_satisfiable : Prop := | |
∀ (T0 : finset L.sentence), (T0 : L.Theory) ⊆ T → (T0 : L.Theory).is_satisfiable | |
variables {T} {T' : L.Theory} | |
lemma model.is_satisfiable (M : Type w) [n : nonempty M] | |
[S : L.Structure M] [M ⊨ T] : T.is_satisfiable := | |
⟨((⊥ : substructure _ (Model.of T M)).elementary_skolem₁_reduct.to_Model T).shrink⟩ | |
lemma is_satisfiable.mono (h : T'.is_satisfiable) (hs : T ⊆ T') : | |
T.is_satisfiable := | |
⟨(Theory.model.mono (Model.is_model h.some) hs).bundled⟩ | |
lemma is_satisfiable.is_finitely_satisfiable (h : T.is_satisfiable) : | |
T.is_finitely_satisfiable := | |
λ _, h.mono | |
/-- The Compactness Theorem of first-order logic: A theory is satisfiable if and only if it is | |
finitely satisfiable. -/ | |
theorem is_satisfiable_iff_is_finitely_satisfiable {T : L.Theory} : | |
T.is_satisfiable ↔ T.is_finitely_satisfiable := | |
⟨Theory.is_satisfiable.is_finitely_satisfiable, λ h, begin | |
classical, | |
set M : Π (T0 : finset T), Type (max u v) := | |
λ T0, (h (T0.map (function.embedding.subtype (λ x, x ∈ T))) | |
T0.map_subtype_subset).some with hM, | |
let M' := filter.product ↑(ultrafilter.of (filter.at_top : filter (finset T))) M, | |
haveI h' : M' ⊨ T, | |
{ refine ⟨λ φ hφ, _⟩, | |
rw ultraproduct.sentence_realize, | |
refine filter.eventually.filter_mono (ultrafilter.of_le _) | |
(filter.eventually_at_top.2 ⟨{⟨φ, hφ⟩}, | |
λ s h', Theory.realize_sentence_of_mem (s.map (function.embedding.subtype (λ x, x ∈ T))) _⟩), | |
simp only [finset.coe_map, function.embedding.coe_subtype, set.mem_image, finset.mem_coe, | |
subtype.exists, subtype.coe_mk, exists_and_distrib_right, exists_eq_right], | |
exact ⟨hφ, h' (finset.mem_singleton_self _)⟩ }, | |
exact ⟨Model.of T M'⟩, | |
end⟩ | |
theorem is_satisfiable_directed_union_iff {ι : Type*} [nonempty ι] | |
{T : ι → L.Theory} (h : directed (⊆) T) : | |
Theory.is_satisfiable (⋃ i, T i) ↔ ∀ i, (T i).is_satisfiable := | |
begin | |
refine ⟨λ h' i, h'.mono (set.subset_Union _ _), λ h', _⟩, | |
rw [is_satisfiable_iff_is_finitely_satisfiable, is_finitely_satisfiable], | |
intros T0 hT0, | |
obtain ⟨i, hi⟩ := h.exists_mem_subset_of_finset_subset_bUnion hT0, | |
exact (h' i).mono hi, | |
end | |
theorem is_satisfiable_union_distinct_constants_theory_of_card_le (T : L.Theory) (s : set α) | |
(M : Type w') [nonempty M] [L.Structure M] [M ⊨ T] | |
(h : cardinal.lift.{w'} (# s) ≤ cardinal.lift.{w} (# M)) : | |
((L.Lhom_with_constants α).on_Theory T ∪ L.distinct_constants_theory s).is_satisfiable := | |
begin | |
haveI : inhabited M := classical.inhabited_of_nonempty infer_instance, | |
rw [cardinal.lift_mk_le'] at h, | |
letI : (constants_on α).Structure M := | |
constants_on.Structure (function.extend coe h.some default), | |
haveI : M ⊨ (L.Lhom_with_constants α).on_Theory T ∪ L.distinct_constants_theory s, | |
{ refine ((Lhom.on_Theory_model _ _).2 infer_instance).union _, | |
rw [model_distinct_constants_theory], | |
refine λ a as b bs ab, _, | |
rw [← subtype.coe_mk a as, ← subtype.coe_mk b bs, ← subtype.ext_iff], | |
exact h.some.injective | |
((function.extend_apply subtype.coe_injective h.some default ⟨a, as⟩).symm.trans | |
(ab.trans (function.extend_apply subtype.coe_injective h.some default ⟨b, bs⟩))), }, | |
exact model.is_satisfiable M, | |
end | |
theorem is_satisfiable_union_distinct_constants_theory_of_infinite (T : L.Theory) (s : set α) | |
(M : Type w') [L.Structure M] [M ⊨ T] [infinite M] : | |
((L.Lhom_with_constants α).on_Theory T ∪ L.distinct_constants_theory s).is_satisfiable := | |
begin | |
classical, | |
rw [distinct_constants_theory_eq_Union, set.union_Union, is_satisfiable_directed_union_iff], | |
{ exact λ t, is_satisfiable_union_distinct_constants_theory_of_card_le T _ M ((lift_le_aleph_0.2 | |
((finset_card_lt_aleph_0 _).le)).trans (aleph_0_le_lift.2 (aleph_0_le_mk M))) }, | |
{ refine (monotone_const.union (monotone_distinct_constants_theory.comp _)).directed_le, | |
simp only [finset.coe_map, function.embedding.coe_subtype], | |
exact set.monotone_image.comp (λ _ _, finset.coe_subset.2) } | |
end | |
/-- Any theory with an infinite model has arbitrarily large models. -/ | |
lemma exists_large_model_of_infinite_model (T : L.Theory) (κ : cardinal.{w}) | |
(M : Type w') [L.Structure M] [M ⊨ T] [infinite M] : | |
∃ (N : Model.{_ _ (max u v w)} T), cardinal.lift.{max u v w} κ ≤ # N := | |
begin | |
obtain ⟨N⟩ := | |
is_satisfiable_union_distinct_constants_theory_of_infinite T (set.univ : set κ.out) M, | |
refine ⟨(N.is_model.mono (set.subset_union_left _ _)).bundled.reduct _, _⟩, | |
haveI : N ⊨ distinct_constants_theory _ _ := N.is_model.mono (set.subset_union_right _ _), | |
simp only [Model.reduct_carrier, coe_of, Model.carrier_eq_coe], | |
refine trans (lift_le.2 (le_of_eq (cardinal.mk_out κ).symm)) _, | |
rw [← mk_univ], | |
refine (card_le_of_model_distinct_constants_theory L set.univ N).trans (lift_le.1 _), | |
rw lift_lift, | |
end | |
end Theory | |
variables (L) | |
/-- A version of The Downward Löwenheim–Skolem theorem where the structure `N` elementarily embeds | |
into `M`, but is not by type a substructure of `M`, and thus can be chosen to belong to the universe | |
of the cardinal `κ`. | |
-/ | |
lemma exists_elementary_embedding_card_eq_of_le (M : Type w') [L.Structure M] [nonempty M] | |
(κ : cardinal.{w}) | |
(h1 : ℵ₀ ≤ κ) | |
(h2 : lift.{w} L.card ≤ cardinal.lift.{max u v} κ) | |
(h3 : lift.{w'} κ ≤ cardinal.lift.{w} (# M)) : | |
∃ (N : bundled L.Structure), nonempty (N ↪ₑ[L] M) ∧ # N = κ := | |
begin | |
obtain ⟨S, _, hS⟩ := exists_elementary_substructure_card_eq L ∅ κ h1 (by simp) h2 h3, | |
haveI : small.{w} S, | |
{ rw [← lift_inj.{_ (w + 1)}, lift_lift, lift_lift] at hS, | |
exact small_iff_lift_mk_lt_univ.2 (lt_of_eq_of_lt hS κ.lift_lt_univ') }, | |
refine ⟨(equiv_shrink S).bundled_induced L, | |
⟨S.subtype.comp (equiv.bundled_induced_equiv L _).symm.to_elementary_embedding⟩, | |
lift_inj.1 (trans _ hS)⟩, | |
simp only [equiv.bundled_induced_α, lift_mk_shrink'], | |
end | |
/-- The Upward Löwenheim–Skolem Theorem: If `κ` is a cardinal greater than the cardinalities of `L` | |
and an infinite `L`-structure `M`, then `M` has an elementary extension of cardinality `κ`. -/ | |
theorem exists_elementary_embedding_card_eq_of_ge (M : Type w') [L.Structure M] [iM : infinite M] | |
(κ : cardinal.{w}) | |
(h1 : cardinal.lift.{w} L.card ≤ cardinal.lift.{max u v} κ) | |
(h2 : cardinal.lift.{w} (# M) ≤ cardinal.lift.{w'} κ) : | |
∃ (N : bundled L.Structure), nonempty (M ↪ₑ[L] N) ∧ # N = κ := | |
begin | |
obtain ⟨N0, hN0⟩ := (L.elementary_diagram M).exists_large_model_of_infinite_model κ M, | |
let f0 := elementary_embedding.of_models_elementary_diagram L M N0, | |
rw [← lift_le.{(max w w') (max u v)}, lift_lift, lift_lift] at h2, | |
obtain ⟨N, ⟨NN0⟩, hN⟩ := exists_elementary_embedding_card_eq_of_le (L[[M]]) N0 κ | |
(aleph_0_le_lift.1 ((aleph_0_le_lift.2 (aleph_0_le_mk M)).trans h2)) _ (hN0.trans _), | |
{ letI := (Lhom_with_constants L M).reduct N, | |
haveI h : N ⊨ L.elementary_diagram M := | |
(NN0.Theory_model_iff (L.elementary_diagram M)).2 infer_instance, | |
refine ⟨bundled.of N, ⟨_⟩, hN⟩, | |
apply elementary_embedding.of_models_elementary_diagram L M N, }, | |
{ simp only [card_with_constants, lift_add, lift_lift], | |
rw [add_comm, add_eq_max (aleph_0_le_lift.2 (infinite_iff.1 iM)), max_le_iff], | |
rw [← lift_le.{_ w'}, lift_lift, lift_lift] at h1, | |
exact ⟨h2, h1⟩, }, | |
{ rw [← lift_umax', lift_id] }, | |
end | |
/-- The Löwenheim–Skolem Theorem: If `κ` is a cardinal greater than the cardinalities of `L` | |
and an infinite `L`-structure `M`, then there is an elementary embedding in the appropriate | |
direction between then `M` and a structure of cardinality `κ`. -/ | |
theorem exists_elementary_embedding_card_eq (M : Type w') [L.Structure M] [iM : infinite M] | |
(κ : cardinal.{w}) | |
(h1 : ℵ₀ ≤ κ) | |
(h2 : lift.{w} L.card ≤ cardinal.lift.{max u v} κ) : | |
∃ (N : bundled L.Structure), (nonempty (N ↪ₑ[L] M) ∨ nonempty (M ↪ₑ[L] N)) ∧ # N = κ := | |
begin | |
cases le_or_gt (lift.{w'} κ) (cardinal.lift.{w} (# M)), | |
{ obtain ⟨N, hN1, hN2⟩ := exists_elementary_embedding_card_eq_of_le L M κ h1 h2 h, | |
exact ⟨N, or.inl hN1, hN2⟩ }, | |
{ obtain ⟨N, hN1, hN2⟩ := exists_elementary_embedding_card_eq_of_ge L M κ h2 (le_of_lt h), | |
exact ⟨N, or.inr hN1, hN2⟩ } | |
end | |
/-- A consequence of the Löwenheim–Skolem Theorem: If `κ` is a cardinal greater than the | |
cardinalities of `L` and an infinite `L`-structure `M`, then there is a structure of cardinality `κ` | |
elementarily equivalent to `M`. -/ | |
lemma exists_elementarily_equivalent_card_eq (M : Type w') [L.Structure M] [infinite M] | |
(κ : cardinal.{w}) | |
(h1 : ℵ₀ ≤ κ) | |
(h2 : lift.{w} L.card ≤ cardinal.lift.{max u v} κ) : | |
∃ (N : category_theory.bundled L.Structure), M ≅[L] N ∧ # N = κ := | |
begin | |
obtain ⟨N, (NM | MN), hNκ⟩ := exists_elementary_embedding_card_eq L M κ h1 h2, | |
{ exact ⟨N, NM.some.elementarily_equivalent.symm, hNκ⟩ }, | |
{ exact ⟨N, MN.some.elementarily_equivalent, hNκ⟩ } | |
end | |
variable {L} | |
namespace Theory | |
theorem exists_model_card_eq | |
(h : ∃ (M : Model.{u v (max u v)} T), infinite M) | |
(κ : cardinal.{w}) | |
(h1 : ℵ₀ ≤ κ) | |
(h2 : cardinal.lift.{w} L.card ≤ cardinal.lift.{max u v} κ) : | |
∃ (N : Model.{u v w} T), # N = κ := | |
begin | |
casesI h with M MI, | |
obtain ⟨N, hN, rfl⟩ := exists_elementarily_equivalent_card_eq L M κ h1 h2, | |
haveI : nonempty N := hN.nonempty, | |
exact ⟨hN.Theory_model.bundled, rfl⟩, | |
end | |
variable (T) | |
/-- A theory models a (bounded) formula when any of its nonempty models realizes that formula on all | |
inputs.-/ | |
def models_bounded_formula (φ : L.bounded_formula α n) : Prop := | |
∀ (M : Model.{u v (max u v)} T) (v : α → M) (xs : fin n → M), φ.realize v xs | |
infix ` ⊨ `:51 := models_bounded_formula -- input using \|= or \vDash, but not using \models | |
variable {T} | |
lemma models_formula_iff {φ : L.formula α} : | |
T ⊨ φ ↔ ∀ (M : Model.{u v (max u v)} T) (v : α → M), φ.realize v := | |
forall_congr (λ M, forall_congr (λ v, unique.forall_iff)) | |
lemma models_sentence_iff {φ : L.sentence} : | |
T ⊨ φ ↔ ∀ (M : Model.{u v (max u v)} T), M ⊨ φ := | |
models_formula_iff.trans (forall_congr (λ M, unique.forall_iff)) | |
lemma models_sentence_of_mem {φ : L.sentence} (h : φ ∈ T) : | |
T ⊨ φ := | |
models_sentence_iff.2 (λ _, realize_sentence_of_mem T h) | |
/-- A theory is complete when it is satisfiable and models each sentence or its negation. -/ | |
def is_complete (T : L.Theory) : Prop := | |
T.is_satisfiable ∧ ∀ (φ : L.sentence), (T ⊨ φ) ∨ (T ⊨ φ.not) | |
/-- Two (bounded) formulas are semantically equivalent over a theory `T` when they have the same | |
interpretation in every model of `T`. (This is also known as logical equivalence, which also has a | |
proof-theoretic definition.) -/ | |
def semantically_equivalent (T : L.Theory) (φ ψ : L.bounded_formula α n) : Prop := | |
T ⊨ φ.iff ψ | |
@[refl] lemma semantically_equivalent.refl (φ : L.bounded_formula α n) : | |
T.semantically_equivalent φ φ := | |
λ M v xs, by rw bounded_formula.realize_iff | |
instance : is_refl (L.bounded_formula α n) T.semantically_equivalent := | |
⟨semantically_equivalent.refl⟩ | |
@[symm] lemma semantically_equivalent.symm {φ ψ : L.bounded_formula α n} | |
(h : T.semantically_equivalent φ ψ) : | |
T.semantically_equivalent ψ φ := | |
λ M v xs, begin | |
rw [bounded_formula.realize_iff, iff.comm, ← bounded_formula.realize_iff], | |
exact h M v xs, | |
end | |
@[trans] lemma semantically_equivalent.trans {φ ψ θ : L.bounded_formula α n} | |
(h1 : T.semantically_equivalent φ ψ) (h2 : T.semantically_equivalent ψ θ) : | |
T.semantically_equivalent φ θ := | |
λ M v xs, begin | |
have h1' := h1 M v xs, | |
have h2' := h2 M v xs, | |
rw [bounded_formula.realize_iff] at *, | |
exact ⟨h2'.1 ∘ h1'.1, h1'.2 ∘ h2'.2⟩, | |
end | |
lemma semantically_equivalent.realize_bd_iff {φ ψ : L.bounded_formula α n} | |
{M : Type (max u v)} [ne : nonempty M] [str : L.Structure M] [hM : T.model M] | |
(h : T.semantically_equivalent φ ψ) {v : α → M} {xs : (fin n → M)} : | |
φ.realize v xs ↔ ψ.realize v xs := | |
bounded_formula.realize_iff.1 (h (Model.of T M) v xs) | |
lemma semantically_equivalent.realize_iff {φ ψ : L.formula α} | |
{M : Type (max u v)} [ne : nonempty M] [str : L.Structure M] (hM : T.model M) | |
(h : T.semantically_equivalent φ ψ) {v : α → M} : | |
φ.realize v ↔ ψ.realize v := | |
h.realize_bd_iff | |
/-- Semantic equivalence forms an equivalence relation on formulas. -/ | |
def semantically_equivalent_setoid (T : L.Theory) : setoid (L.bounded_formula α n) := | |
{ r := semantically_equivalent T, | |
iseqv := ⟨λ _, refl _, λ a b h, h.symm, λ _ _ _ h1 h2, h1.trans h2⟩ } | |
protected lemma semantically_equivalent.all {φ ψ : L.bounded_formula α (n + 1)} | |
(h : T.semantically_equivalent φ ψ) : T.semantically_equivalent φ.all ψ.all := | |
begin | |
simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff, | |
bounded_formula.realize_all], | |
exact λ M v xs, forall_congr (λ a, h.realize_bd_iff), | |
end | |
protected lemma semantically_equivalent.ex {φ ψ : L.bounded_formula α (n + 1)} | |
(h : T.semantically_equivalent φ ψ) : T.semantically_equivalent φ.ex ψ.ex := | |
begin | |
simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff, | |
bounded_formula.realize_ex], | |
exact λ M v xs, exists_congr (λ a, h.realize_bd_iff), | |
end | |
protected lemma semantically_equivalent.not {φ ψ : L.bounded_formula α n} | |
(h : T.semantically_equivalent φ ψ) : T.semantically_equivalent φ.not ψ.not := | |
begin | |
simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff, | |
bounded_formula.realize_not], | |
exact λ M v xs, not_congr h.realize_bd_iff, | |
end | |
protected lemma semantically_equivalent.imp {φ ψ φ' ψ' : L.bounded_formula α n} | |
(h : T.semantically_equivalent φ ψ) (h' : T.semantically_equivalent φ' ψ') : | |
T.semantically_equivalent (φ.imp φ') (ψ.imp ψ') := | |
begin | |
simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff, | |
bounded_formula.realize_imp], | |
exact λ M v xs, imp_congr h.realize_bd_iff h'.realize_bd_iff, | |
end | |
end Theory | |
namespace complete_theory | |
variables (L) (M : Type w) [L.Structure M] | |
lemma is_satisfiable [nonempty M] : (L.complete_theory M).is_satisfiable := | |
Theory.model.is_satisfiable M | |
lemma mem_or_not_mem (φ : L.sentence) : | |
φ ∈ L.complete_theory M ∨ φ.not ∈ L.complete_theory M := | |
by simp_rw [complete_theory, set.mem_set_of_eq, sentence.realize, formula.realize_not, or_not] | |
lemma is_complete [nonempty M] : (L.complete_theory M).is_complete := | |
⟨is_satisfiable L M, | |
λ φ, ((mem_or_not_mem L M φ).imp Theory.models_sentence_of_mem Theory.models_sentence_of_mem)⟩ | |
end complete_theory | |
namespace bounded_formula | |
variables (φ ψ : L.bounded_formula α n) | |
lemma semantically_equivalent_not_not : | |
T.semantically_equivalent φ φ.not.not := | |
λ M v xs, by simp | |
lemma imp_semantically_equivalent_not_sup : | |
T.semantically_equivalent (φ.imp ψ) (φ.not ⊔ ψ) := | |
λ M v xs, by simp [imp_iff_not_or] | |
lemma sup_semantically_equivalent_not_inf_not : | |
T.semantically_equivalent (φ ⊔ ψ) (φ.not ⊓ ψ.not).not := | |
λ M v xs, by simp [imp_iff_not_or] | |
lemma inf_semantically_equivalent_not_sup_not : | |
T.semantically_equivalent (φ ⊓ ψ) (φ.not ⊔ ψ.not).not := | |
λ M v xs, by simp [and_iff_not_or_not] | |
lemma all_semantically_equivalent_not_ex_not (φ : L.bounded_formula α (n + 1)) : | |
T.semantically_equivalent φ.all φ.not.ex.not := | |
λ M v xs, by simp | |
lemma ex_semantically_equivalent_not_all_not (φ : L.bounded_formula α (n + 1)) : | |
T.semantically_equivalent φ.ex φ.not.all.not := | |
λ M v xs, by simp | |
lemma semantically_equivalent_all_lift_at : | |
T.semantically_equivalent φ (φ.lift_at 1 n).all := | |
λ M v xs, by { resetI, rw [realize_iff, realize_all_lift_at_one_self] } | |
end bounded_formula | |
namespace formula | |
variables (φ ψ : L.formula α) | |
lemma semantically_equivalent_not_not : | |
T.semantically_equivalent φ φ.not.not := | |
φ.semantically_equivalent_not_not | |
lemma imp_semantically_equivalent_not_sup : | |
T.semantically_equivalent (φ.imp ψ) (φ.not ⊔ ψ) := | |
φ.imp_semantically_equivalent_not_sup ψ | |
lemma sup_semantically_equivalent_not_inf_not : | |
T.semantically_equivalent (φ ⊔ ψ) (φ.not ⊓ ψ.not).not := | |
φ.sup_semantically_equivalent_not_inf_not ψ | |
lemma inf_semantically_equivalent_not_sup_not : | |
T.semantically_equivalent (φ ⊓ ψ) (φ.not ⊔ ψ.not).not := | |
φ.inf_semantically_equivalent_not_sup_not ψ | |
end formula | |
namespace bounded_formula | |
lemma is_qf.induction_on_sup_not {P : L.bounded_formula α n → Prop} {φ : L.bounded_formula α n} | |
(h : is_qf φ) | |
(hf : P (⊥ : L.bounded_formula α n)) | |
(ha : ∀ (ψ : L.bounded_formula α n), is_atomic ψ → P ψ) | |
(hsup : ∀ {φ₁ φ₂} (h₁ : P φ₁) (h₂ : P φ₂), P (φ₁ ⊔ φ₂)) | |
(hnot : ∀ {φ} (h : P φ), P φ.not) | |
(hse : ∀ {φ₁ φ₂ : L.bounded_formula α n} | |
(h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) : | |
P φ := | |
is_qf.rec_on h hf ha (λ φ₁ φ₂ _ _ h1 h2, | |
(hse (φ₁.imp_semantically_equivalent_not_sup φ₂)).2 (hsup (hnot h1) h2)) | |
lemma is_qf.induction_on_inf_not {P : L.bounded_formula α n → Prop} {φ : L.bounded_formula α n} | |
(h : is_qf φ) | |
(hf : P (⊥ : L.bounded_formula α n)) | |
(ha : ∀ (ψ : L.bounded_formula α n), is_atomic ψ → P ψ) | |
(hinf : ∀ {φ₁ φ₂} (h₁ : P φ₁) (h₂ : P φ₂), P (φ₁ ⊓ φ₂)) | |
(hnot : ∀ {φ} (h : P φ), P φ.not) | |
(hse : ∀ {φ₁ φ₂ : L.bounded_formula α n} | |
(h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) : | |
P φ := | |
h.induction_on_sup_not hf ha (λ φ₁ φ₂ h1 h2, | |
((hse (φ₁.sup_semantically_equivalent_not_inf_not φ₂)).2 (hnot (hinf (hnot h1) (hnot h2))))) | |
(λ _, hnot) (λ _ _, hse) | |
lemma semantically_equivalent_to_prenex (φ : L.bounded_formula α n) : | |
(∅ : L.Theory).semantically_equivalent φ φ.to_prenex := | |
λ M v xs, by rw [realize_iff, realize_to_prenex] | |
lemma induction_on_all_ex {P : Π {m}, L.bounded_formula α m → Prop} (φ : L.bounded_formula α n) | |
(hqf : ∀ {m} {ψ : L.bounded_formula α m}, is_qf ψ → P ψ) | |
(hall : ∀ {m} {ψ : L.bounded_formula α (m + 1)} (h : P ψ), P ψ.all) | |
(hex : ∀ {m} {φ : L.bounded_formula α (m + 1)} (h : P φ), P φ.ex) | |
(hse : ∀ {m} {φ₁ φ₂ : L.bounded_formula α m} | |
(h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) : | |
P φ := | |
begin | |
suffices h' : ∀ {m} {φ : L.bounded_formula α m}, φ.is_prenex → P φ, | |
{ exact (hse φ.semantically_equivalent_to_prenex).2 (h' φ.to_prenex_is_prenex) }, | |
intros m φ hφ, | |
induction hφ with _ _ hφ _ _ _ hφ _ _ _ hφ, | |
{ exact hqf hφ }, | |
{ exact hall hφ, }, | |
{ exact hex hφ, }, | |
end | |
lemma induction_on_exists_not {P : Π {m}, L.bounded_formula α m → Prop} (φ : L.bounded_formula α n) | |
(hqf : ∀ {m} {ψ : L.bounded_formula α m}, is_qf ψ → P ψ) | |
(hnot : ∀ {m} {φ : L.bounded_formula α m} (h : P φ), P φ.not) | |
(hex : ∀ {m} {φ : L.bounded_formula α (m + 1)} (h : P φ), P φ.ex) | |
(hse : ∀ {m} {φ₁ φ₂ : L.bounded_formula α m} | |
(h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) : | |
P φ := | |
φ.induction_on_all_ex | |
(λ _ _, hqf) | |
(λ _ φ hφ, (hse φ.all_semantically_equivalent_not_ex_not).2 (hnot (hex (hnot hφ)))) | |
(λ _ _, hex) (λ _ _ _, hse) | |
end bounded_formula | |
end language | |
end first_order | |
namespace cardinal | |
open first_order first_order.language | |
variables {L : language.{u v}} (κ : cardinal.{w}) (T : L.Theory) | |
/-- A theory is `κ`-categorical if all models of size `κ` are isomorphic. -/ | |
def categorical : Prop := | |
∀ (M N : T.Model), # M = κ → # N = κ → nonempty (M ≃[L] N) | |
/-- The Łoś–Vaught Test : a criterion for categorical theories to be complete. -/ | |
lemma categorical.is_complete (h : κ.categorical T) | |
(h1 : ℵ₀ ≤ κ) | |
(h2 : cardinal.lift.{w} L.card ≤ cardinal.lift.{max u v} κ) | |
(hS : T.is_satisfiable) | |
(hT : ∀ (M : Theory.Model.{u v max u v} T), infinite M) : | |
T.is_complete := | |
⟨hS, λ φ, begin | |
obtain ⟨N, hN⟩ := Theory.exists_model_card_eq ⟨hS.some, hT hS.some⟩ κ h1 h2, | |
rw [Theory.models_sentence_iff, Theory.models_sentence_iff], | |
by_contra con, | |
push_neg at con, | |
obtain ⟨⟨MF, hMF⟩, MT, hMT⟩ := con, | |
rw [sentence.realize_not, not_not] at hMT, | |
refine hMF _, | |
haveI := hT MT, | |
haveI := hT MF, | |
obtain ⟨NT, MNT, hNT⟩ := exists_elementarily_equivalent_card_eq L MT κ h1 h2, | |
obtain ⟨NF, MNF, hNF⟩ := exists_elementarily_equivalent_card_eq L MF κ h1 h2, | |
obtain ⟨TF⟩ := h (MNT.to_Model T) (MNF.to_Model T) hNT hNF, | |
exact ((MNT.realize_sentence φ).trans | |
((TF.realize_sentence φ).trans (MNF.realize_sentence φ).symm)).1 hMT, | |
end⟩ | |
theorem empty_Theory_categorical (T : language.empty.Theory) : | |
κ.categorical T := | |
λ M N hM hN, by rw [empty.nonempty_equiv_iff, hM, hN] | |
theorem empty_infinite_Theory_is_complete : | |
language.empty.infinite_theory.is_complete := | |
(empty_Theory_categorical ℵ₀ _).is_complete ℵ₀ _ le_rfl (by simp) | |
⟨Theory.model.bundled ((model_infinite_theory_iff language.empty).2 nat.infinite)⟩ | |
(λ M, (model_infinite_theory_iff language.empty).1 M.is_model) | |
end cardinal | |