/- Copyright (c) 2021 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import model_theory.ultraproducts import model_theory.bundled import model_theory.skolem /-! # First-Order Satisfiability This file deals with the satisfiability of first-order theories, as well as equivalence over them. ## Main Definitions * `first_order.language.Theory.is_satisfiable`: `T.is_satisfiable` indicates that `T` has a nonempty model. * `first_order.language.Theory.is_finitely_satisfiable`: `T.is_finitely_satisfiable` indicates that every finite subset of `T` is satisfiable. * `first_order.language.Theory.is_complete`: `T.is_complete` indicates that `T` is satisfiable and models each sentence or its negation. * `first_order.language.Theory.semantically_equivalent`: `T.semantically_equivalent φ ψ` indicates that `φ` and `ψ` are equivalent formulas or sentences in models of `T`. * `cardinal.categorical`: A theory is `κ`-categorical if all models of size `κ` are isomorphic. ## Main Results * The Compactness Theorem, `first_order.language.Theory.is_satisfiable_iff_is_finitely_satisfiable`, shows that a theory is satisfiable iff it is finitely satisfiable. * `first_order.language.complete_theory.is_complete`: The complete theory of a structure is complete. * `first_order.language.Theory.exists_large_model_of_infinite_model` shows that any theory with an infinite model has arbitrarily large models. * `first_order.language.Theory.exists_elementary_embedding_card_eq`: The Upward Löwenheim–Skolem Theorem: If `κ` is a cardinal greater than the cardinalities of `L` and an infinite `L`-structure `M`, then `M` has an elementary extension of cardinality `κ`. ## Implementation Details * Satisfiability of an `L.Theory` `T` is defined in the minimal universe containing all the symbols of `L`. By Löwenheim-Skolem, this is equivalent to satisfiability in any universe. -/ universes u v w w' open cardinal category_theory open_locale cardinal first_order namespace first_order namespace language variables {L : language.{u v}} {T : L.Theory} {α : Type w} {n : ℕ} namespace Theory variable (T) /-- A theory is satisfiable if a structure models it. -/ def is_satisfiable : Prop := nonempty (Model.{u v (max u v)} T) /-- A theory is finitely satisfiable if all of its finite subtheories are satisfiable. -/ def is_finitely_satisfiable : Prop := ∀ (T0 : finset L.sentence), (T0 : L.Theory) ⊆ T → (T0 : L.Theory).is_satisfiable variables {T} {T' : L.Theory} lemma model.is_satisfiable (M : Type w) [n : nonempty M] [S : L.Structure M] [M ⊨ T] : T.is_satisfiable := ⟨((⊥ : substructure _ (Model.of T M)).elementary_skolem₁_reduct.to_Model T).shrink⟩ lemma is_satisfiable.mono (h : T'.is_satisfiable) (hs : T ⊆ T') : T.is_satisfiable := ⟨(Theory.model.mono (Model.is_model h.some) hs).bundled⟩ lemma is_satisfiable.is_finitely_satisfiable (h : T.is_satisfiable) : T.is_finitely_satisfiable := λ _, h.mono /-- The Compactness Theorem of first-order logic: A theory is satisfiable if and only if it is finitely satisfiable. -/ theorem is_satisfiable_iff_is_finitely_satisfiable {T : L.Theory} : T.is_satisfiable ↔ T.is_finitely_satisfiable := ⟨Theory.is_satisfiable.is_finitely_satisfiable, λ h, begin classical, set M : Π (T0 : finset T), Type (max u v) := λ T0, (h (T0.map (function.embedding.subtype (λ x, x ∈ T))) T0.map_subtype_subset).some with hM, let M' := filter.product ↑(ultrafilter.of (filter.at_top : filter (finset T))) M, haveI h' : M' ⊨ T, { refine ⟨λ φ hφ, _⟩, rw ultraproduct.sentence_realize, refine filter.eventually.filter_mono (ultrafilter.of_le _) (filter.eventually_at_top.2 ⟨{⟨φ, hφ⟩}, λ s h', Theory.realize_sentence_of_mem (s.map (function.embedding.subtype (λ x, x ∈ T))) _⟩), simp only [finset.coe_map, function.embedding.coe_subtype, set.mem_image, finset.mem_coe, subtype.exists, subtype.coe_mk, exists_and_distrib_right, exists_eq_right], exact ⟨hφ, h' (finset.mem_singleton_self _)⟩ }, exact ⟨Model.of T M'⟩, end⟩ theorem is_satisfiable_directed_union_iff {ι : Type*} [nonempty ι] {T : ι → L.Theory} (h : directed (⊆) T) : Theory.is_satisfiable (⋃ i, T i) ↔ ∀ i, (T i).is_satisfiable := begin refine ⟨λ h' i, h'.mono (set.subset_Union _ _), λ h', _⟩, rw [is_satisfiable_iff_is_finitely_satisfiable, is_finitely_satisfiable], intros T0 hT0, obtain ⟨i, hi⟩ := h.exists_mem_subset_of_finset_subset_bUnion hT0, exact (h' i).mono hi, end theorem is_satisfiable_union_distinct_constants_theory_of_card_le (T : L.Theory) (s : set α) (M : Type w') [nonempty M] [L.Structure M] [M ⊨ T] (h : cardinal.lift.{w'} (# s) ≤ cardinal.lift.{w} (# M)) : ((L.Lhom_with_constants α).on_Theory T ∪ L.distinct_constants_theory s).is_satisfiable := begin haveI : inhabited M := classical.inhabited_of_nonempty infer_instance, rw [cardinal.lift_mk_le'] at h, letI : (constants_on α).Structure M := constants_on.Structure (function.extend coe h.some default), haveI : M ⊨ (L.Lhom_with_constants α).on_Theory T ∪ L.distinct_constants_theory s, { refine ((Lhom.on_Theory_model _ _).2 infer_instance).union _, rw [model_distinct_constants_theory], refine λ a as b bs ab, _, rw [← subtype.coe_mk a as, ← subtype.coe_mk b bs, ← subtype.ext_iff], exact h.some.injective ((function.extend_apply subtype.coe_injective h.some default ⟨a, as⟩).symm.trans (ab.trans (function.extend_apply subtype.coe_injective h.some default ⟨b, bs⟩))), }, exact model.is_satisfiable M, end theorem is_satisfiable_union_distinct_constants_theory_of_infinite (T : L.Theory) (s : set α) (M : Type w') [L.Structure M] [M ⊨ T] [infinite M] : ((L.Lhom_with_constants α).on_Theory T ∪ L.distinct_constants_theory s).is_satisfiable := begin classical, rw [distinct_constants_theory_eq_Union, set.union_Union, is_satisfiable_directed_union_iff], { exact λ t, is_satisfiable_union_distinct_constants_theory_of_card_le T _ M ((lift_le_aleph_0.2 ((finset_card_lt_aleph_0 _).le)).trans (aleph_0_le_lift.2 (aleph_0_le_mk M))) }, { refine (monotone_const.union (monotone_distinct_constants_theory.comp _)).directed_le, simp only [finset.coe_map, function.embedding.coe_subtype], exact set.monotone_image.comp (λ _ _, finset.coe_subset.2) } end /-- Any theory with an infinite model has arbitrarily large models. -/ lemma exists_large_model_of_infinite_model (T : L.Theory) (κ : cardinal.{w}) (M : Type w') [L.Structure M] [M ⊨ T] [infinite M] : ∃ (N : Model.{_ _ (max u v w)} T), cardinal.lift.{max u v w} κ ≤ # N := begin obtain ⟨N⟩ := is_satisfiable_union_distinct_constants_theory_of_infinite T (set.univ : set κ.out) M, refine ⟨(N.is_model.mono (set.subset_union_left _ _)).bundled.reduct _, _⟩, haveI : N ⊨ distinct_constants_theory _ _ := N.is_model.mono (set.subset_union_right _ _), simp only [Model.reduct_carrier, coe_of, Model.carrier_eq_coe], refine trans (lift_le.2 (le_of_eq (cardinal.mk_out κ).symm)) _, rw [← mk_univ], refine (card_le_of_model_distinct_constants_theory L set.univ N).trans (lift_le.1 _), rw lift_lift, end end Theory variables (L) /-- A version of The Downward Löwenheim–Skolem theorem where the structure `N` elementarily embeds into `M`, but is not by type a substructure of `M`, and thus can be chosen to belong to the universe of the cardinal `κ`. -/ lemma exists_elementary_embedding_card_eq_of_le (M : Type w') [L.Structure M] [nonempty M] (κ : cardinal.{w}) (h1 : ℵ₀ ≤ κ) (h2 : lift.{w} L.card ≤ cardinal.lift.{max u v} κ) (h3 : lift.{w'} κ ≤ cardinal.lift.{w} (# M)) : ∃ (N : bundled L.Structure), nonempty (N ↪ₑ[L] M) ∧ # N = κ := begin obtain ⟨S, _, hS⟩ := exists_elementary_substructure_card_eq L ∅ κ h1 (by simp) h2 h3, haveI : small.{w} S, { rw [← lift_inj.{_ (w + 1)}, lift_lift, lift_lift] at hS, exact small_iff_lift_mk_lt_univ.2 (lt_of_eq_of_lt hS κ.lift_lt_univ') }, refine ⟨(equiv_shrink S).bundled_induced L, ⟨S.subtype.comp (equiv.bundled_induced_equiv L _).symm.to_elementary_embedding⟩, lift_inj.1 (trans _ hS)⟩, simp only [equiv.bundled_induced_α, lift_mk_shrink'], end /-- The Upward Löwenheim–Skolem Theorem: If `κ` is a cardinal greater than the cardinalities of `L` and an infinite `L`-structure `M`, then `M` has an elementary extension of cardinality `κ`. -/ theorem exists_elementary_embedding_card_eq_of_ge (M : Type w') [L.Structure M] [iM : infinite M] (κ : cardinal.{w}) (h1 : cardinal.lift.{w} L.card ≤ cardinal.lift.{max u v} κ) (h2 : cardinal.lift.{w} (# M) ≤ cardinal.lift.{w'} κ) : ∃ (N : bundled L.Structure), nonempty (M ↪ₑ[L] N) ∧ # N = κ := begin obtain ⟨N0, hN0⟩ := (L.elementary_diagram M).exists_large_model_of_infinite_model κ M, let f0 := elementary_embedding.of_models_elementary_diagram L M N0, rw [← lift_le.{(max w w') (max u v)}, lift_lift, lift_lift] at h2, obtain ⟨N, ⟨NN0⟩, hN⟩ := exists_elementary_embedding_card_eq_of_le (L[[M]]) N0 κ (aleph_0_le_lift.1 ((aleph_0_le_lift.2 (aleph_0_le_mk M)).trans h2)) _ (hN0.trans _), { letI := (Lhom_with_constants L M).reduct N, haveI h : N ⊨ L.elementary_diagram M := (NN0.Theory_model_iff (L.elementary_diagram M)).2 infer_instance, refine ⟨bundled.of N, ⟨_⟩, hN⟩, apply elementary_embedding.of_models_elementary_diagram L M N, }, { simp only [card_with_constants, lift_add, lift_lift], rw [add_comm, add_eq_max (aleph_0_le_lift.2 (infinite_iff.1 iM)), max_le_iff], rw [← lift_le.{_ w'}, lift_lift, lift_lift] at h1, exact ⟨h2, h1⟩, }, { rw [← lift_umax', lift_id] }, end /-- The Löwenheim–Skolem Theorem: If `κ` is a cardinal greater than the cardinalities of `L` and an infinite `L`-structure `M`, then there is an elementary embedding in the appropriate direction between then `M` and a structure of cardinality `κ`. -/ theorem exists_elementary_embedding_card_eq (M : Type w') [L.Structure M] [iM : infinite M] (κ : cardinal.{w}) (h1 : ℵ₀ ≤ κ) (h2 : lift.{w} L.card ≤ cardinal.lift.{max u v} κ) : ∃ (N : bundled L.Structure), (nonempty (N ↪ₑ[L] M) ∨ nonempty (M ↪ₑ[L] N)) ∧ # N = κ := begin cases le_or_gt (lift.{w'} κ) (cardinal.lift.{w} (# M)), { obtain ⟨N, hN1, hN2⟩ := exists_elementary_embedding_card_eq_of_le L M κ h1 h2 h, exact ⟨N, or.inl hN1, hN2⟩ }, { obtain ⟨N, hN1, hN2⟩ := exists_elementary_embedding_card_eq_of_ge L M κ h2 (le_of_lt h), exact ⟨N, or.inr hN1, hN2⟩ } end /-- A consequence of the Löwenheim–Skolem Theorem: If `κ` is a cardinal greater than the cardinalities of `L` and an infinite `L`-structure `M`, then there is a structure of cardinality `κ` elementarily equivalent to `M`. -/ lemma exists_elementarily_equivalent_card_eq (M : Type w') [L.Structure M] [infinite M] (κ : cardinal.{w}) (h1 : ℵ₀ ≤ κ) (h2 : lift.{w} L.card ≤ cardinal.lift.{max u v} κ) : ∃ (N : category_theory.bundled L.Structure), M ≅[L] N ∧ # N = κ := begin obtain ⟨N, (NM | MN), hNκ⟩ := exists_elementary_embedding_card_eq L M κ h1 h2, { exact ⟨N, NM.some.elementarily_equivalent.symm, hNκ⟩ }, { exact ⟨N, MN.some.elementarily_equivalent, hNκ⟩ } end variable {L} namespace Theory theorem exists_model_card_eq (h : ∃ (M : Model.{u v (max u v)} T), infinite M) (κ : cardinal.{w}) (h1 : ℵ₀ ≤ κ) (h2 : cardinal.lift.{w} L.card ≤ cardinal.lift.{max u v} κ) : ∃ (N : Model.{u v w} T), # N = κ := begin casesI h with M MI, obtain ⟨N, hN, rfl⟩ := exists_elementarily_equivalent_card_eq L M κ h1 h2, haveI : nonempty N := hN.nonempty, exact ⟨hN.Theory_model.bundled, rfl⟩, end variable (T) /-- A theory models a (bounded) formula when any of its nonempty models realizes that formula on all inputs.-/ def models_bounded_formula (φ : L.bounded_formula α n) : Prop := ∀ (M : Model.{u v (max u v)} T) (v : α → M) (xs : fin n → M), φ.realize v xs infix ` ⊨ `:51 := models_bounded_formula -- input using \|= or \vDash, but not using \models variable {T} lemma models_formula_iff {φ : L.formula α} : T ⊨ φ ↔ ∀ (M : Model.{u v (max u v)} T) (v : α → M), φ.realize v := forall_congr (λ M, forall_congr (λ v, unique.forall_iff)) lemma models_sentence_iff {φ : L.sentence} : T ⊨ φ ↔ ∀ (M : Model.{u v (max u v)} T), M ⊨ φ := models_formula_iff.trans (forall_congr (λ M, unique.forall_iff)) lemma models_sentence_of_mem {φ : L.sentence} (h : φ ∈ T) : T ⊨ φ := models_sentence_iff.2 (λ _, realize_sentence_of_mem T h) /-- A theory is complete when it is satisfiable and models each sentence or its negation. -/ def is_complete (T : L.Theory) : Prop := T.is_satisfiable ∧ ∀ (φ : L.sentence), (T ⊨ φ) ∨ (T ⊨ φ.not) /-- Two (bounded) formulas are semantically equivalent over a theory `T` when they have the same interpretation in every model of `T`. (This is also known as logical equivalence, which also has a proof-theoretic definition.) -/ def semantically_equivalent (T : L.Theory) (φ ψ : L.bounded_formula α n) : Prop := T ⊨ φ.iff ψ @[refl] lemma semantically_equivalent.refl (φ : L.bounded_formula α n) : T.semantically_equivalent φ φ := λ M v xs, by rw bounded_formula.realize_iff instance : is_refl (L.bounded_formula α n) T.semantically_equivalent := ⟨semantically_equivalent.refl⟩ @[symm] lemma semantically_equivalent.symm {φ ψ : L.bounded_formula α n} (h : T.semantically_equivalent φ ψ) : T.semantically_equivalent ψ φ := λ M v xs, begin rw [bounded_formula.realize_iff, iff.comm, ← bounded_formula.realize_iff], exact h M v xs, end @[trans] lemma semantically_equivalent.trans {φ ψ θ : L.bounded_formula α n} (h1 : T.semantically_equivalent φ ψ) (h2 : T.semantically_equivalent ψ θ) : T.semantically_equivalent φ θ := λ M v xs, begin have h1' := h1 M v xs, have h2' := h2 M v xs, rw [bounded_formula.realize_iff] at *, exact ⟨h2'.1 ∘ h1'.1, h1'.2 ∘ h2'.2⟩, end lemma semantically_equivalent.realize_bd_iff {φ ψ : L.bounded_formula α n} {M : Type (max u v)} [ne : nonempty M] [str : L.Structure M] [hM : T.model M] (h : T.semantically_equivalent φ ψ) {v : α → M} {xs : (fin n → M)} : φ.realize v xs ↔ ψ.realize v xs := bounded_formula.realize_iff.1 (h (Model.of T M) v xs) lemma semantically_equivalent.realize_iff {φ ψ : L.formula α} {M : Type (max u v)} [ne : nonempty M] [str : L.Structure M] (hM : T.model M) (h : T.semantically_equivalent φ ψ) {v : α → M} : φ.realize v ↔ ψ.realize v := h.realize_bd_iff /-- Semantic equivalence forms an equivalence relation on formulas. -/ def semantically_equivalent_setoid (T : L.Theory) : setoid (L.bounded_formula α n) := { r := semantically_equivalent T, iseqv := ⟨λ _, refl _, λ a b h, h.symm, λ _ _ _ h1 h2, h1.trans h2⟩ } protected lemma semantically_equivalent.all {φ ψ : L.bounded_formula α (n + 1)} (h : T.semantically_equivalent φ ψ) : T.semantically_equivalent φ.all ψ.all := begin simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff, bounded_formula.realize_all], exact λ M v xs, forall_congr (λ a, h.realize_bd_iff), end protected lemma semantically_equivalent.ex {φ ψ : L.bounded_formula α (n + 1)} (h : T.semantically_equivalent φ ψ) : T.semantically_equivalent φ.ex ψ.ex := begin simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff, bounded_formula.realize_ex], exact λ M v xs, exists_congr (λ a, h.realize_bd_iff), end protected lemma semantically_equivalent.not {φ ψ : L.bounded_formula α n} (h : T.semantically_equivalent φ ψ) : T.semantically_equivalent φ.not ψ.not := begin simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff, bounded_formula.realize_not], exact λ M v xs, not_congr h.realize_bd_iff, end protected lemma semantically_equivalent.imp {φ ψ φ' ψ' : L.bounded_formula α n} (h : T.semantically_equivalent φ ψ) (h' : T.semantically_equivalent φ' ψ') : T.semantically_equivalent (φ.imp φ') (ψ.imp ψ') := begin simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff, bounded_formula.realize_imp], exact λ M v xs, imp_congr h.realize_bd_iff h'.realize_bd_iff, end end Theory namespace complete_theory variables (L) (M : Type w) [L.Structure M] lemma is_satisfiable [nonempty M] : (L.complete_theory M).is_satisfiable := Theory.model.is_satisfiable M lemma mem_or_not_mem (φ : L.sentence) : φ ∈ L.complete_theory M ∨ φ.not ∈ L.complete_theory M := by simp_rw [complete_theory, set.mem_set_of_eq, sentence.realize, formula.realize_not, or_not] lemma is_complete [nonempty M] : (L.complete_theory M).is_complete := ⟨is_satisfiable L M, λ φ, ((mem_or_not_mem L M φ).imp Theory.models_sentence_of_mem Theory.models_sentence_of_mem)⟩ end complete_theory namespace bounded_formula variables (φ ψ : L.bounded_formula α n) lemma semantically_equivalent_not_not : T.semantically_equivalent φ φ.not.not := λ M v xs, by simp lemma imp_semantically_equivalent_not_sup : T.semantically_equivalent (φ.imp ψ) (φ.not ⊔ ψ) := λ M v xs, by simp [imp_iff_not_or] lemma sup_semantically_equivalent_not_inf_not : T.semantically_equivalent (φ ⊔ ψ) (φ.not ⊓ ψ.not).not := λ M v xs, by simp [imp_iff_not_or] lemma inf_semantically_equivalent_not_sup_not : T.semantically_equivalent (φ ⊓ ψ) (φ.not ⊔ ψ.not).not := λ M v xs, by simp [and_iff_not_or_not] lemma all_semantically_equivalent_not_ex_not (φ : L.bounded_formula α (n + 1)) : T.semantically_equivalent φ.all φ.not.ex.not := λ M v xs, by simp lemma ex_semantically_equivalent_not_all_not (φ : L.bounded_formula α (n + 1)) : T.semantically_equivalent φ.ex φ.not.all.not := λ M v xs, by simp lemma semantically_equivalent_all_lift_at : T.semantically_equivalent φ (φ.lift_at 1 n).all := λ M v xs, by { resetI, rw [realize_iff, realize_all_lift_at_one_self] } end bounded_formula namespace formula variables (φ ψ : L.formula α) lemma semantically_equivalent_not_not : T.semantically_equivalent φ φ.not.not := φ.semantically_equivalent_not_not lemma imp_semantically_equivalent_not_sup : T.semantically_equivalent (φ.imp ψ) (φ.not ⊔ ψ) := φ.imp_semantically_equivalent_not_sup ψ lemma sup_semantically_equivalent_not_inf_not : T.semantically_equivalent (φ ⊔ ψ) (φ.not ⊓ ψ.not).not := φ.sup_semantically_equivalent_not_inf_not ψ lemma inf_semantically_equivalent_not_sup_not : T.semantically_equivalent (φ ⊓ ψ) (φ.not ⊔ ψ.not).not := φ.inf_semantically_equivalent_not_sup_not ψ end formula namespace bounded_formula lemma is_qf.induction_on_sup_not {P : L.bounded_formula α n → Prop} {φ : L.bounded_formula α n} (h : is_qf φ) (hf : P (⊥ : L.bounded_formula α n)) (ha : ∀ (ψ : L.bounded_formula α n), is_atomic ψ → P ψ) (hsup : ∀ {φ₁ φ₂} (h₁ : P φ₁) (h₂ : P φ₂), P (φ₁ ⊔ φ₂)) (hnot : ∀ {φ} (h : P φ), P φ.not) (hse : ∀ {φ₁ φ₂ : L.bounded_formula α n} (h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) : P φ := is_qf.rec_on h hf ha (λ φ₁ φ₂ _ _ h1 h2, (hse (φ₁.imp_semantically_equivalent_not_sup φ₂)).2 (hsup (hnot h1) h2)) lemma is_qf.induction_on_inf_not {P : L.bounded_formula α n → Prop} {φ : L.bounded_formula α n} (h : is_qf φ) (hf : P (⊥ : L.bounded_formula α n)) (ha : ∀ (ψ : L.bounded_formula α n), is_atomic ψ → P ψ) (hinf : ∀ {φ₁ φ₂} (h₁ : P φ₁) (h₂ : P φ₂), P (φ₁ ⊓ φ₂)) (hnot : ∀ {φ} (h : P φ), P φ.not) (hse : ∀ {φ₁ φ₂ : L.bounded_formula α n} (h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) : P φ := h.induction_on_sup_not hf ha (λ φ₁ φ₂ h1 h2, ((hse (φ₁.sup_semantically_equivalent_not_inf_not φ₂)).2 (hnot (hinf (hnot h1) (hnot h2))))) (λ _, hnot) (λ _ _, hse) lemma semantically_equivalent_to_prenex (φ : L.bounded_formula α n) : (∅ : L.Theory).semantically_equivalent φ φ.to_prenex := λ M v xs, by rw [realize_iff, realize_to_prenex] lemma induction_on_all_ex {P : Π {m}, L.bounded_formula α m → Prop} (φ : L.bounded_formula α n) (hqf : ∀ {m} {ψ : L.bounded_formula α m}, is_qf ψ → P ψ) (hall : ∀ {m} {ψ : L.bounded_formula α (m + 1)} (h : P ψ), P ψ.all) (hex : ∀ {m} {φ : L.bounded_formula α (m + 1)} (h : P φ), P φ.ex) (hse : ∀ {m} {φ₁ φ₂ : L.bounded_formula α m} (h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) : P φ := begin suffices h' : ∀ {m} {φ : L.bounded_formula α m}, φ.is_prenex → P φ, { exact (hse φ.semantically_equivalent_to_prenex).2 (h' φ.to_prenex_is_prenex) }, intros m φ hφ, induction hφ with _ _ hφ _ _ _ hφ _ _ _ hφ, { exact hqf hφ }, { exact hall hφ, }, { exact hex hφ, }, end lemma induction_on_exists_not {P : Π {m}, L.bounded_formula α m → Prop} (φ : L.bounded_formula α n) (hqf : ∀ {m} {ψ : L.bounded_formula α m}, is_qf ψ → P ψ) (hnot : ∀ {m} {φ : L.bounded_formula α m} (h : P φ), P φ.not) (hex : ∀ {m} {φ : L.bounded_formula α (m + 1)} (h : P φ), P φ.ex) (hse : ∀ {m} {φ₁ φ₂ : L.bounded_formula α m} (h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) : P φ := φ.induction_on_all_ex (λ _ _, hqf) (λ _ φ hφ, (hse φ.all_semantically_equivalent_not_ex_not).2 (hnot (hex (hnot hφ)))) (λ _ _, hex) (λ _ _ _, hse) end bounded_formula end language end first_order namespace cardinal open first_order first_order.language variables {L : language.{u v}} (κ : cardinal.{w}) (T : L.Theory) /-- A theory is `κ`-categorical if all models of size `κ` are isomorphic. -/ def categorical : Prop := ∀ (M N : T.Model), # M = κ → # N = κ → nonempty (M ≃[L] N) /-- The Łoś–Vaught Test : a criterion for categorical theories to be complete. -/ lemma categorical.is_complete (h : κ.categorical T) (h1 : ℵ₀ ≤ κ) (h2 : cardinal.lift.{w} L.card ≤ cardinal.lift.{max u v} κ) (hS : T.is_satisfiable) (hT : ∀ (M : Theory.Model.{u v max u v} T), infinite M) : T.is_complete := ⟨hS, λ φ, begin obtain ⟨N, hN⟩ := Theory.exists_model_card_eq ⟨hS.some, hT hS.some⟩ κ h1 h2, rw [Theory.models_sentence_iff, Theory.models_sentence_iff], by_contra con, push_neg at con, obtain ⟨⟨MF, hMF⟩, MT, hMT⟩ := con, rw [sentence.realize_not, not_not] at hMT, refine hMF _, haveI := hT MT, haveI := hT MF, obtain ⟨NT, MNT, hNT⟩ := exists_elementarily_equivalent_card_eq L MT κ h1 h2, obtain ⟨NF, MNF, hNF⟩ := exists_elementarily_equivalent_card_eq L MF κ h1 h2, obtain ⟨TF⟩ := h (MNT.to_Model T) (MNF.to_Model T) hNT hNF, exact ((MNT.realize_sentence φ).trans ((TF.realize_sentence φ).trans (MNF.realize_sentence φ).symm)).1 hMT, end⟩ theorem empty_Theory_categorical (T : language.empty.Theory) : κ.categorical T := λ M N hM hN, by rw [empty.nonempty_equiv_iff, hM, hN] theorem empty_infinite_Theory_is_complete : language.empty.infinite_theory.is_complete := (empty_Theory_categorical ℵ₀ _).is_complete ℵ₀ _ le_rfl (by simp) ⟨Theory.model.bundled ((model_infinite_theory_iff language.empty).2 nat.infinite)⟩ (λ M, (model_infinite_theory_iff language.empty).1 M.is_model) end cardinal