Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 23,829 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
/-
Copyright (c) 2021 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import model_theory.ultraproducts
import model_theory.bundled
import model_theory.skolem
/-!
# First-Order Satisfiability
This file deals with the satisfiability of first-order theories, as well as equivalence over them.
## Main Definitions
* `first_order.language.Theory.is_satisfiable`: `T.is_satisfiable` indicates that `T` has a nonempty
model.
* `first_order.language.Theory.is_finitely_satisfiable`: `T.is_finitely_satisfiable` indicates that
every finite subset of `T` is satisfiable.
* `first_order.language.Theory.is_complete`: `T.is_complete` indicates that `T` is satisfiable and
models each sentence or its negation.
* `first_order.language.Theory.semantically_equivalent`: `T.semantically_equivalent φ ψ` indicates
that `φ` and `ψ` are equivalent formulas or sentences in models of `T`.
* `cardinal.categorical`: A theory is `κ`-categorical if all models of size `κ` are isomorphic.
## Main Results
* The Compactness Theorem, `first_order.language.Theory.is_satisfiable_iff_is_finitely_satisfiable`,
shows that a theory is satisfiable iff it is finitely satisfiable.
* `first_order.language.complete_theory.is_complete`: The complete theory of a structure is
complete.
* `first_order.language.Theory.exists_large_model_of_infinite_model` shows that any theory with an
infinite model has arbitrarily large models.
* `first_order.language.Theory.exists_elementary_embedding_card_eq`: The Upward Löwenheim–Skolem
Theorem: If `κ` is a cardinal greater than the cardinalities of `L` and an infinite `L`-structure
`M`, then `M` has an elementary extension of cardinality `κ`.
## Implementation Details
* Satisfiability of an `L.Theory` `T` is defined in the minimal universe containing all the symbols
of `L`. By Löwenheim-Skolem, this is equivalent to satisfiability in any universe.
-/
universes u v w w'
open cardinal category_theory
open_locale cardinal first_order
namespace first_order
namespace language
variables {L : language.{u v}} {T : L.Theory} {α : Type w} {n : ℕ}
namespace Theory
variable (T)
/-- A theory is satisfiable if a structure models it. -/
def is_satisfiable : Prop := nonempty (Model.{u v (max u v)} T)
/-- A theory is finitely satisfiable if all of its finite subtheories are satisfiable. -/
def is_finitely_satisfiable : Prop :=
∀ (T0 : finset L.sentence), (T0 : L.Theory) ⊆ T → (T0 : L.Theory).is_satisfiable
variables {T} {T' : L.Theory}
lemma model.is_satisfiable (M : Type w) [n : nonempty M]
[S : L.Structure M] [M ⊨ T] : T.is_satisfiable :=
⟨((⊥ : substructure _ (Model.of T M)).elementary_skolem₁_reduct.to_Model T).shrink⟩
lemma is_satisfiable.mono (h : T'.is_satisfiable) (hs : T ⊆ T') :
T.is_satisfiable :=
⟨(Theory.model.mono (Model.is_model h.some) hs).bundled⟩
lemma is_satisfiable.is_finitely_satisfiable (h : T.is_satisfiable) :
T.is_finitely_satisfiable :=
λ _, h.mono
/-- The Compactness Theorem of first-order logic: A theory is satisfiable if and only if it is
finitely satisfiable. -/
theorem is_satisfiable_iff_is_finitely_satisfiable {T : L.Theory} :
T.is_satisfiable ↔ T.is_finitely_satisfiable :=
⟨Theory.is_satisfiable.is_finitely_satisfiable, λ h, begin
classical,
set M : Π (T0 : finset T), Type (max u v) :=
λ T0, (h (T0.map (function.embedding.subtype (λ x, x ∈ T)))
T0.map_subtype_subset).some with hM,
let M' := filter.product ↑(ultrafilter.of (filter.at_top : filter (finset T))) M,
haveI h' : M' ⊨ T,
{ refine ⟨λ φ hφ, _⟩,
rw ultraproduct.sentence_realize,
refine filter.eventually.filter_mono (ultrafilter.of_le _)
(filter.eventually_at_top.2 ⟨{⟨φ, hφ⟩},
λ s h', Theory.realize_sentence_of_mem (s.map (function.embedding.subtype (λ x, x ∈ T))) _⟩),
simp only [finset.coe_map, function.embedding.coe_subtype, set.mem_image, finset.mem_coe,
subtype.exists, subtype.coe_mk, exists_and_distrib_right, exists_eq_right],
exact ⟨hφ, h' (finset.mem_singleton_self _)⟩ },
exact ⟨Model.of T M'⟩,
end⟩
theorem is_satisfiable_directed_union_iff {ι : Type*} [nonempty ι]
{T : ι → L.Theory} (h : directed (⊆) T) :
Theory.is_satisfiable (⋃ i, T i) ↔ ∀ i, (T i).is_satisfiable :=
begin
refine ⟨λ h' i, h'.mono (set.subset_Union _ _), λ h', _⟩,
rw [is_satisfiable_iff_is_finitely_satisfiable, is_finitely_satisfiable],
intros T0 hT0,
obtain ⟨i, hi⟩ := h.exists_mem_subset_of_finset_subset_bUnion hT0,
exact (h' i).mono hi,
end
theorem is_satisfiable_union_distinct_constants_theory_of_card_le (T : L.Theory) (s : set α)
(M : Type w') [nonempty M] [L.Structure M] [M ⊨ T]
(h : cardinal.lift.{w'} (# s) ≤ cardinal.lift.{w} (# M)) :
((L.Lhom_with_constants α).on_Theory T ∪ L.distinct_constants_theory s).is_satisfiable :=
begin
haveI : inhabited M := classical.inhabited_of_nonempty infer_instance,
rw [cardinal.lift_mk_le'] at h,
letI : (constants_on α).Structure M :=
constants_on.Structure (function.extend coe h.some default),
haveI : M ⊨ (L.Lhom_with_constants α).on_Theory T ∪ L.distinct_constants_theory s,
{ refine ((Lhom.on_Theory_model _ _).2 infer_instance).union _,
rw [model_distinct_constants_theory],
refine λ a as b bs ab, _,
rw [← subtype.coe_mk a as, ← subtype.coe_mk b bs, ← subtype.ext_iff],
exact h.some.injective
((function.extend_apply subtype.coe_injective h.some default ⟨a, as⟩).symm.trans
(ab.trans (function.extend_apply subtype.coe_injective h.some default ⟨b, bs⟩))), },
exact model.is_satisfiable M,
end
theorem is_satisfiable_union_distinct_constants_theory_of_infinite (T : L.Theory) (s : set α)
(M : Type w') [L.Structure M] [M ⊨ T] [infinite M] :
((L.Lhom_with_constants α).on_Theory T ∪ L.distinct_constants_theory s).is_satisfiable :=
begin
classical,
rw [distinct_constants_theory_eq_Union, set.union_Union, is_satisfiable_directed_union_iff],
{ exact λ t, is_satisfiable_union_distinct_constants_theory_of_card_le T _ M ((lift_le_aleph_0.2
((finset_card_lt_aleph_0 _).le)).trans (aleph_0_le_lift.2 (aleph_0_le_mk M))) },
{ refine (monotone_const.union (monotone_distinct_constants_theory.comp _)).directed_le,
simp only [finset.coe_map, function.embedding.coe_subtype],
exact set.monotone_image.comp (λ _ _, finset.coe_subset.2) }
end
/-- Any theory with an infinite model has arbitrarily large models. -/
lemma exists_large_model_of_infinite_model (T : L.Theory) (κ : cardinal.{w})
(M : Type w') [L.Structure M] [M ⊨ T] [infinite M] :
∃ (N : Model.{_ _ (max u v w)} T), cardinal.lift.{max u v w} κ ≤ # N :=
begin
obtain ⟨N⟩ :=
is_satisfiable_union_distinct_constants_theory_of_infinite T (set.univ : set κ.out) M,
refine ⟨(N.is_model.mono (set.subset_union_left _ _)).bundled.reduct _, _⟩,
haveI : N ⊨ distinct_constants_theory _ _ := N.is_model.mono (set.subset_union_right _ _),
simp only [Model.reduct_carrier, coe_of, Model.carrier_eq_coe],
refine trans (lift_le.2 (le_of_eq (cardinal.mk_out κ).symm)) _,
rw [← mk_univ],
refine (card_le_of_model_distinct_constants_theory L set.univ N).trans (lift_le.1 _),
rw lift_lift,
end
end Theory
variables (L)
/-- A version of The Downward Löwenheim–Skolem theorem where the structure `N` elementarily embeds
into `M`, but is not by type a substructure of `M`, and thus can be chosen to belong to the universe
of the cardinal `κ`.
-/
lemma exists_elementary_embedding_card_eq_of_le (M : Type w') [L.Structure M] [nonempty M]
(κ : cardinal.{w})
(h1 : ℵ₀ ≤ κ)
(h2 : lift.{w} L.card ≤ cardinal.lift.{max u v} κ)
(h3 : lift.{w'} κ ≤ cardinal.lift.{w} (# M)) :
∃ (N : bundled L.Structure), nonempty (N ↪ₑ[L] M) ∧ # N = κ :=
begin
obtain ⟨S, _, hS⟩ := exists_elementary_substructure_card_eq L ∅ κ h1 (by simp) h2 h3,
haveI : small.{w} S,
{ rw [← lift_inj.{_ (w + 1)}, lift_lift, lift_lift] at hS,
exact small_iff_lift_mk_lt_univ.2 (lt_of_eq_of_lt hS κ.lift_lt_univ') },
refine ⟨(equiv_shrink S).bundled_induced L,
⟨S.subtype.comp (equiv.bundled_induced_equiv L _).symm.to_elementary_embedding⟩,
lift_inj.1 (trans _ hS)⟩,
simp only [equiv.bundled_induced_α, lift_mk_shrink'],
end
/-- The Upward Löwenheim–Skolem Theorem: If `κ` is a cardinal greater than the cardinalities of `L`
and an infinite `L`-structure `M`, then `M` has an elementary extension of cardinality `κ`. -/
theorem exists_elementary_embedding_card_eq_of_ge (M : Type w') [L.Structure M] [iM : infinite M]
(κ : cardinal.{w})
(h1 : cardinal.lift.{w} L.card ≤ cardinal.lift.{max u v} κ)
(h2 : cardinal.lift.{w} (# M) ≤ cardinal.lift.{w'} κ) :
∃ (N : bundled L.Structure), nonempty (M ↪ₑ[L] N) ∧ # N = κ :=
begin
obtain ⟨N0, hN0⟩ := (L.elementary_diagram M).exists_large_model_of_infinite_model κ M,
let f0 := elementary_embedding.of_models_elementary_diagram L M N0,
rw [← lift_le.{(max w w') (max u v)}, lift_lift, lift_lift] at h2,
obtain ⟨N, ⟨NN0⟩, hN⟩ := exists_elementary_embedding_card_eq_of_le (L[[M]]) N0 κ
(aleph_0_le_lift.1 ((aleph_0_le_lift.2 (aleph_0_le_mk M)).trans h2)) _ (hN0.trans _),
{ letI := (Lhom_with_constants L M).reduct N,
haveI h : N ⊨ L.elementary_diagram M :=
(NN0.Theory_model_iff (L.elementary_diagram M)).2 infer_instance,
refine ⟨bundled.of N, ⟨_⟩, hN⟩,
apply elementary_embedding.of_models_elementary_diagram L M N, },
{ simp only [card_with_constants, lift_add, lift_lift],
rw [add_comm, add_eq_max (aleph_0_le_lift.2 (infinite_iff.1 iM)), max_le_iff],
rw [← lift_le.{_ w'}, lift_lift, lift_lift] at h1,
exact ⟨h2, h1⟩, },
{ rw [← lift_umax', lift_id] },
end
/-- The Löwenheim–Skolem Theorem: If `κ` is a cardinal greater than the cardinalities of `L`
and an infinite `L`-structure `M`, then there is an elementary embedding in the appropriate
direction between then `M` and a structure of cardinality `κ`. -/
theorem exists_elementary_embedding_card_eq (M : Type w') [L.Structure M] [iM : infinite M]
(κ : cardinal.{w})
(h1 : ℵ₀ ≤ κ)
(h2 : lift.{w} L.card ≤ cardinal.lift.{max u v} κ) :
∃ (N : bundled L.Structure), (nonempty (N ↪ₑ[L] M) ∨ nonempty (M ↪ₑ[L] N)) ∧ # N = κ :=
begin
cases le_or_gt (lift.{w'} κ) (cardinal.lift.{w} (# M)),
{ obtain ⟨N, hN1, hN2⟩ := exists_elementary_embedding_card_eq_of_le L M κ h1 h2 h,
exact ⟨N, or.inl hN1, hN2⟩ },
{ obtain ⟨N, hN1, hN2⟩ := exists_elementary_embedding_card_eq_of_ge L M κ h2 (le_of_lt h),
exact ⟨N, or.inr hN1, hN2⟩ }
end
/-- A consequence of the Löwenheim–Skolem Theorem: If `κ` is a cardinal greater than the
cardinalities of `L` and an infinite `L`-structure `M`, then there is a structure of cardinality `κ`
elementarily equivalent to `M`. -/
lemma exists_elementarily_equivalent_card_eq (M : Type w') [L.Structure M] [infinite M]
(κ : cardinal.{w})
(h1 : ℵ₀ ≤ κ)
(h2 : lift.{w} L.card ≤ cardinal.lift.{max u v} κ) :
∃ (N : category_theory.bundled L.Structure), M ≅[L] N ∧ # N = κ :=
begin
obtain ⟨N, (NM | MN), hNκ⟩ := exists_elementary_embedding_card_eq L M κ h1 h2,
{ exact ⟨N, NM.some.elementarily_equivalent.symm, hNκ⟩ },
{ exact ⟨N, MN.some.elementarily_equivalent, hNκ⟩ }
end
variable {L}
namespace Theory
theorem exists_model_card_eq
(h : ∃ (M : Model.{u v (max u v)} T), infinite M)
(κ : cardinal.{w})
(h1 : ℵ₀ ≤ κ)
(h2 : cardinal.lift.{w} L.card ≤ cardinal.lift.{max u v} κ) :
∃ (N : Model.{u v w} T), # N = κ :=
begin
casesI h with M MI,
obtain ⟨N, hN, rfl⟩ := exists_elementarily_equivalent_card_eq L M κ h1 h2,
haveI : nonempty N := hN.nonempty,
exact ⟨hN.Theory_model.bundled, rfl⟩,
end
variable (T)
/-- A theory models a (bounded) formula when any of its nonempty models realizes that formula on all
inputs.-/
def models_bounded_formula (φ : L.bounded_formula α n) : Prop :=
∀ (M : Model.{u v (max u v)} T) (v : α → M) (xs : fin n → M), φ.realize v xs
infix ` ⊨ `:51 := models_bounded_formula -- input using \|= or \vDash, but not using \models
variable {T}
lemma models_formula_iff {φ : L.formula α} :
T ⊨ φ ↔ ∀ (M : Model.{u v (max u v)} T) (v : α → M), φ.realize v :=
forall_congr (λ M, forall_congr (λ v, unique.forall_iff))
lemma models_sentence_iff {φ : L.sentence} :
T ⊨ φ ↔ ∀ (M : Model.{u v (max u v)} T), M ⊨ φ :=
models_formula_iff.trans (forall_congr (λ M, unique.forall_iff))
lemma models_sentence_of_mem {φ : L.sentence} (h : φ ∈ T) :
T ⊨ φ :=
models_sentence_iff.2 (λ _, realize_sentence_of_mem T h)
/-- A theory is complete when it is satisfiable and models each sentence or its negation. -/
def is_complete (T : L.Theory) : Prop :=
T.is_satisfiable ∧ ∀ (φ : L.sentence), (T ⊨ φ) ∨ (T ⊨ φ.not)
/-- Two (bounded) formulas are semantically equivalent over a theory `T` when they have the same
interpretation in every model of `T`. (This is also known as logical equivalence, which also has a
proof-theoretic definition.) -/
def semantically_equivalent (T : L.Theory) (φ ψ : L.bounded_formula α n) : Prop :=
T ⊨ φ.iff ψ
@[refl] lemma semantically_equivalent.refl (φ : L.bounded_formula α n) :
T.semantically_equivalent φ φ :=
λ M v xs, by rw bounded_formula.realize_iff
instance : is_refl (L.bounded_formula α n) T.semantically_equivalent :=
⟨semantically_equivalent.refl⟩
@[symm] lemma semantically_equivalent.symm {φ ψ : L.bounded_formula α n}
(h : T.semantically_equivalent φ ψ) :
T.semantically_equivalent ψ φ :=
λ M v xs, begin
rw [bounded_formula.realize_iff, iff.comm, ← bounded_formula.realize_iff],
exact h M v xs,
end
@[trans] lemma semantically_equivalent.trans {φ ψ θ : L.bounded_formula α n}
(h1 : T.semantically_equivalent φ ψ) (h2 : T.semantically_equivalent ψ θ) :
T.semantically_equivalent φ θ :=
λ M v xs, begin
have h1' := h1 M v xs,
have h2' := h2 M v xs,
rw [bounded_formula.realize_iff] at *,
exact ⟨h2'.1 ∘ h1'.1, h1'.2 ∘ h2'.2⟩,
end
lemma semantically_equivalent.realize_bd_iff {φ ψ : L.bounded_formula α n}
{M : Type (max u v)} [ne : nonempty M] [str : L.Structure M] [hM : T.model M]
(h : T.semantically_equivalent φ ψ) {v : α → M} {xs : (fin n → M)} :
φ.realize v xs ↔ ψ.realize v xs :=
bounded_formula.realize_iff.1 (h (Model.of T M) v xs)
lemma semantically_equivalent.realize_iff {φ ψ : L.formula α}
{M : Type (max u v)} [ne : nonempty M] [str : L.Structure M] (hM : T.model M)
(h : T.semantically_equivalent φ ψ) {v : α → M} :
φ.realize v ↔ ψ.realize v :=
h.realize_bd_iff
/-- Semantic equivalence forms an equivalence relation on formulas. -/
def semantically_equivalent_setoid (T : L.Theory) : setoid (L.bounded_formula α n) :=
{ r := semantically_equivalent T,
iseqv := ⟨λ _, refl _, λ a b h, h.symm, λ _ _ _ h1 h2, h1.trans h2⟩ }
protected lemma semantically_equivalent.all {φ ψ : L.bounded_formula α (n + 1)}
(h : T.semantically_equivalent φ ψ) : T.semantically_equivalent φ.all ψ.all :=
begin
simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff,
bounded_formula.realize_all],
exact λ M v xs, forall_congr (λ a, h.realize_bd_iff),
end
protected lemma semantically_equivalent.ex {φ ψ : L.bounded_formula α (n + 1)}
(h : T.semantically_equivalent φ ψ) : T.semantically_equivalent φ.ex ψ.ex :=
begin
simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff,
bounded_formula.realize_ex],
exact λ M v xs, exists_congr (λ a, h.realize_bd_iff),
end
protected lemma semantically_equivalent.not {φ ψ : L.bounded_formula α n}
(h : T.semantically_equivalent φ ψ) : T.semantically_equivalent φ.not ψ.not :=
begin
simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff,
bounded_formula.realize_not],
exact λ M v xs, not_congr h.realize_bd_iff,
end
protected lemma semantically_equivalent.imp {φ ψ φ' ψ' : L.bounded_formula α n}
(h : T.semantically_equivalent φ ψ) (h' : T.semantically_equivalent φ' ψ') :
T.semantically_equivalent (φ.imp φ') (ψ.imp ψ') :=
begin
simp_rw [semantically_equivalent, models_bounded_formula, bounded_formula.realize_iff,
bounded_formula.realize_imp],
exact λ M v xs, imp_congr h.realize_bd_iff h'.realize_bd_iff,
end
end Theory
namespace complete_theory
variables (L) (M : Type w) [L.Structure M]
lemma is_satisfiable [nonempty M] : (L.complete_theory M).is_satisfiable :=
Theory.model.is_satisfiable M
lemma mem_or_not_mem (φ : L.sentence) :
φ ∈ L.complete_theory M ∨ φ.not ∈ L.complete_theory M :=
by simp_rw [complete_theory, set.mem_set_of_eq, sentence.realize, formula.realize_not, or_not]
lemma is_complete [nonempty M] : (L.complete_theory M).is_complete :=
⟨is_satisfiable L M,
λ φ, ((mem_or_not_mem L M φ).imp Theory.models_sentence_of_mem Theory.models_sentence_of_mem)⟩
end complete_theory
namespace bounded_formula
variables (φ ψ : L.bounded_formula α n)
lemma semantically_equivalent_not_not :
T.semantically_equivalent φ φ.not.not :=
λ M v xs, by simp
lemma imp_semantically_equivalent_not_sup :
T.semantically_equivalent (φ.imp ψ) (φ.not ⊔ ψ) :=
λ M v xs, by simp [imp_iff_not_or]
lemma sup_semantically_equivalent_not_inf_not :
T.semantically_equivalent (φ ⊔ ψ) (φ.not ⊓ ψ.not).not :=
λ M v xs, by simp [imp_iff_not_or]
lemma inf_semantically_equivalent_not_sup_not :
T.semantically_equivalent (φ ⊓ ψ) (φ.not ⊔ ψ.not).not :=
λ M v xs, by simp [and_iff_not_or_not]
lemma all_semantically_equivalent_not_ex_not (φ : L.bounded_formula α (n + 1)) :
T.semantically_equivalent φ.all φ.not.ex.not :=
λ M v xs, by simp
lemma ex_semantically_equivalent_not_all_not (φ : L.bounded_formula α (n + 1)) :
T.semantically_equivalent φ.ex φ.not.all.not :=
λ M v xs, by simp
lemma semantically_equivalent_all_lift_at :
T.semantically_equivalent φ (φ.lift_at 1 n).all :=
λ M v xs, by { resetI, rw [realize_iff, realize_all_lift_at_one_self] }
end bounded_formula
namespace formula
variables (φ ψ : L.formula α)
lemma semantically_equivalent_not_not :
T.semantically_equivalent φ φ.not.not :=
φ.semantically_equivalent_not_not
lemma imp_semantically_equivalent_not_sup :
T.semantically_equivalent (φ.imp ψ) (φ.not ⊔ ψ) :=
φ.imp_semantically_equivalent_not_sup ψ
lemma sup_semantically_equivalent_not_inf_not :
T.semantically_equivalent (φ ⊔ ψ) (φ.not ⊓ ψ.not).not :=
φ.sup_semantically_equivalent_not_inf_not ψ
lemma inf_semantically_equivalent_not_sup_not :
T.semantically_equivalent (φ ⊓ ψ) (φ.not ⊔ ψ.not).not :=
φ.inf_semantically_equivalent_not_sup_not ψ
end formula
namespace bounded_formula
lemma is_qf.induction_on_sup_not {P : L.bounded_formula α n → Prop} {φ : L.bounded_formula α n}
(h : is_qf φ)
(hf : P (⊥ : L.bounded_formula α n))
(ha : ∀ (ψ : L.bounded_formula α n), is_atomic ψ → P ψ)
(hsup : ∀ {φ₁ φ₂} (h₁ : P φ₁) (h₂ : P φ₂), P (φ₁ ⊔ φ₂))
(hnot : ∀ {φ} (h : P φ), P φ.not)
(hse : ∀ {φ₁ φ₂ : L.bounded_formula α n}
(h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) :
P φ :=
is_qf.rec_on h hf ha (λ φ₁ φ₂ _ _ h1 h2,
(hse (φ₁.imp_semantically_equivalent_not_sup φ₂)).2 (hsup (hnot h1) h2))
lemma is_qf.induction_on_inf_not {P : L.bounded_formula α n → Prop} {φ : L.bounded_formula α n}
(h : is_qf φ)
(hf : P (⊥ : L.bounded_formula α n))
(ha : ∀ (ψ : L.bounded_formula α n), is_atomic ψ → P ψ)
(hinf : ∀ {φ₁ φ₂} (h₁ : P φ₁) (h₂ : P φ₂), P (φ₁ ⊓ φ₂))
(hnot : ∀ {φ} (h : P φ), P φ.not)
(hse : ∀ {φ₁ φ₂ : L.bounded_formula α n}
(h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) :
P φ :=
h.induction_on_sup_not hf ha (λ φ₁ φ₂ h1 h2,
((hse (φ₁.sup_semantically_equivalent_not_inf_not φ₂)).2 (hnot (hinf (hnot h1) (hnot h2)))))
(λ _, hnot) (λ _ _, hse)
lemma semantically_equivalent_to_prenex (φ : L.bounded_formula α n) :
(∅ : L.Theory).semantically_equivalent φ φ.to_prenex :=
λ M v xs, by rw [realize_iff, realize_to_prenex]
lemma induction_on_all_ex {P : Π {m}, L.bounded_formula α m → Prop} (φ : L.bounded_formula α n)
(hqf : ∀ {m} {ψ : L.bounded_formula α m}, is_qf ψ → P ψ)
(hall : ∀ {m} {ψ : L.bounded_formula α (m + 1)} (h : P ψ), P ψ.all)
(hex : ∀ {m} {φ : L.bounded_formula α (m + 1)} (h : P φ), P φ.ex)
(hse : ∀ {m} {φ₁ φ₂ : L.bounded_formula α m}
(h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) :
P φ :=
begin
suffices h' : ∀ {m} {φ : L.bounded_formula α m}, φ.is_prenex → P φ,
{ exact (hse φ.semantically_equivalent_to_prenex).2 (h' φ.to_prenex_is_prenex) },
intros m φ hφ,
induction hφ with _ _ hφ _ _ _ hφ _ _ _ hφ,
{ exact hqf hφ },
{ exact hall hφ, },
{ exact hex hφ, },
end
lemma induction_on_exists_not {P : Π {m}, L.bounded_formula α m → Prop} (φ : L.bounded_formula α n)
(hqf : ∀ {m} {ψ : L.bounded_formula α m}, is_qf ψ → P ψ)
(hnot : ∀ {m} {φ : L.bounded_formula α m} (h : P φ), P φ.not)
(hex : ∀ {m} {φ : L.bounded_formula α (m + 1)} (h : P φ), P φ.ex)
(hse : ∀ {m} {φ₁ φ₂ : L.bounded_formula α m}
(h : Theory.semantically_equivalent ∅ φ₁ φ₂), P φ₁ ↔ P φ₂) :
P φ :=
φ.induction_on_all_ex
(λ _ _, hqf)
(λ _ φ hφ, (hse φ.all_semantically_equivalent_not_ex_not).2 (hnot (hex (hnot hφ))))
(λ _ _, hex) (λ _ _ _, hse)
end bounded_formula
end language
end first_order
namespace cardinal
open first_order first_order.language
variables {L : language.{u v}} (κ : cardinal.{w}) (T : L.Theory)
/-- A theory is `κ`-categorical if all models of size `κ` are isomorphic. -/
def categorical : Prop :=
∀ (M N : T.Model), # M = κ → # N = κ → nonempty (M ≃[L] N)
/-- The Łoś–Vaught Test : a criterion for categorical theories to be complete. -/
lemma categorical.is_complete (h : κ.categorical T)
(h1 : ℵ₀ ≤ κ)
(h2 : cardinal.lift.{w} L.card ≤ cardinal.lift.{max u v} κ)
(hS : T.is_satisfiable)
(hT : ∀ (M : Theory.Model.{u v max u v} T), infinite M) :
T.is_complete :=
⟨hS, λ φ, begin
obtain ⟨N, hN⟩ := Theory.exists_model_card_eq ⟨hS.some, hT hS.some⟩ κ h1 h2,
rw [Theory.models_sentence_iff, Theory.models_sentence_iff],
by_contra con,
push_neg at con,
obtain ⟨⟨MF, hMF⟩, MT, hMT⟩ := con,
rw [sentence.realize_not, not_not] at hMT,
refine hMF _,
haveI := hT MT,
haveI := hT MF,
obtain ⟨NT, MNT, hNT⟩ := exists_elementarily_equivalent_card_eq L MT κ h1 h2,
obtain ⟨NF, MNF, hNF⟩ := exists_elementarily_equivalent_card_eq L MF κ h1 h2,
obtain ⟨TF⟩ := h (MNT.to_Model T) (MNF.to_Model T) hNT hNF,
exact ((MNT.realize_sentence φ).trans
((TF.realize_sentence φ).trans (MNF.realize_sentence φ).symm)).1 hMT,
end⟩
theorem empty_Theory_categorical (T : language.empty.Theory) :
κ.categorical T :=
λ M N hM hN, by rw [empty.nonempty_equiv_iff, hM, hN]
theorem empty_infinite_Theory_is_complete :
language.empty.infinite_theory.is_complete :=
(empty_Theory_categorical ℵ₀ _).is_complete ℵ₀ _ le_rfl (by simp)
⟨Theory.model.bundled ((model_infinite_theory_iff language.empty).2 nat.infinite)⟩
(λ M, (model_infinite_theory_iff language.empty).1 M.is_model)
end cardinal
|