Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
21.6 kB
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import tactic.basic
import logic.relator
/-!
# Relation closures
This file defines the reflexive, transitive, and reflexive transitive closures of relations.
It also proves some basic results on definitions in core, such as `eqv_gen`.
Note that this is about unbundled relations, that is terms of types of the form `α → β → Prop`. For
the bundled version, see `rel`.
## Definitions
* `relation.refl_gen`: Reflexive closure. `refl_gen r` relates everything `r` related, plus for all
`a` it relates `a` with itself. So `refl_gen r a b ↔ r a b ∨ a = b`.
* `relation.trans_gen`: Transitive closure. `trans_gen r` relates everything `r` related
transitively. So `trans_gen r a b ↔ ∃ x₀ ... xₙ, r a x₀ ∧ r x₀ x₁ ∧ ... ∧ r xₙ b`.
* `relation.refl_trans_gen`: Reflexive transitive closure. `refl_trans_gen r` relates everything
`r` related transitively, plus for all `a` it relates `a` with itself. So
`refl_trans_gen r a b ↔ (∃ x₀ ... xₙ, r a x₀ ∧ r x₀ x₁ ∧ ... ∧ r xₙ b) ∨ a = b`. It is the same as
the reflexive closure of the transitive closure, or the transitive closure of the reflexive
closure. In terms of rewriting systems, this means that `a` can be rewritten to `b` in a number of
rewrites.
* `relation.comp`: Relation composition. We provide notation `∘r`. For `r : α → β → Prop` and
`s : β → γ → Prop`, `r ∘r s`relates `a : α` and `c : γ` iff there exists `b : β` that's related to
both.
* `relation.map`: Image of a relation under a pair of maps. For `r : α → β → Prop`, `f : α → γ`,
`g : β → δ`, `map r f g` is the relation `γ → δ → Prop` relating `f a` and `g b` for all `a`, `b`
related by `r`.
* `relation.join`: Join of a relation. For `r : α → α → Prop`, `join r a b ↔ ∃ c, r a c ∧ r b c`. In
terms of rewriting systems, this means that `a` and `b` can be rewritten to the same term.
-/
open function
variables {α β γ δ : Type*}
section ne_imp
variable {r : α → α → Prop}
lemma is_refl.reflexive [is_refl α r] : reflexive r :=
λ x, is_refl.refl x
/-- To show a reflexive relation `r : α → α → Prop` holds over `x y : α`,
it suffices to show it holds when `x ≠ y`. -/
lemma reflexive.rel_of_ne_imp (h : reflexive r) {x y : α} (hr : x ≠ y → r x y) : r x y :=
begin
by_cases hxy : x = y,
{ exact hxy ▸ h x },
{ exact hr hxy }
end
/-- If a reflexive relation `r : α → α → Prop` holds over `x y : α`,
then it holds whether or not `x ≠ y`. -/
lemma reflexive.ne_imp_iff (h : reflexive r) {x y : α} :
(x ≠ y → r x y) ↔ r x y :=
⟨h.rel_of_ne_imp, λ hr _, hr⟩
/-- If a reflexive relation `r : α → α → Prop` holds over `x y : α`,
then it holds whether or not `x ≠ y`. Unlike `reflexive.ne_imp_iff`, this uses `[is_refl α r]`. -/
lemma reflexive_ne_imp_iff [is_refl α r] {x y : α} :
(x ≠ y → r x y) ↔ r x y :=
is_refl.reflexive.ne_imp_iff
protected lemma symmetric.iff (H : symmetric r) (x y : α) : r x y ↔ r y x := ⟨λ h, H h, λ h, H h⟩
lemma symmetric.flip_eq (h : symmetric r) : flip r = r := funext₂ $ λ _ _, propext $ h.iff _ _
lemma symmetric.swap_eq : symmetric r → swap r = r := symmetric.flip_eq
lemma flip_eq_iff : flip r = r ↔ symmetric r := ⟨λ h x y, (congr_fun₂ h _ _).mp, symmetric.flip_eq⟩
lemma swap_eq_iff : swap r = r ↔ symmetric r := flip_eq_iff
end ne_imp
section comap
variables {r : β → β → Prop}
lemma reflexive.comap (h : reflexive r) (f : α → β) : reflexive (r on f) :=
λ a, h (f a)
lemma symmetric.comap (h : symmetric r) (f : α → β) : symmetric (r on f) :=
λ a b hab, h hab
lemma transitive.comap (h : transitive r) (f : α → β) : transitive (r on f) :=
λ a b c hab hbc, h hab hbc
lemma equivalence.comap (h : equivalence r) (f : α → β) : equivalence (r on f) :=
⟨h.1.comap f, h.2.1.comap f, h.2.2.comap f⟩
end comap
namespace relation
section comp
variables {r : α → β → Prop} {p : β → γ → Prop} {q : γ → δ → Prop}
/--
The composition of two relations, yielding a new relation. The result
relates a term of `α` and a term of `γ` if there is an intermediate
term of `β` related to both.
-/
def comp (r : α → β → Prop) (p : β → γ → Prop) (a : α) (c : γ) : Prop := ∃ b, r a b ∧ p b c
local infixr ` ∘r ` : 80 := relation.comp
lemma comp_eq : r ∘r (=) = r :=
funext $ λ a, funext $ λ b, propext $ iff.intro
(λ ⟨c, h, eq⟩, eq ▸ h)
(λ h, ⟨b, h, rfl⟩)
lemma eq_comp : (=) ∘r r = r :=
funext $ λ a, funext $ λ b, propext $ iff.intro
(λ ⟨c, eq, h⟩, eq.symm ▸ h)
(λ h, ⟨a, rfl, h⟩)
lemma iff_comp {r : Prop → α → Prop} : (↔) ∘r r = r :=
have (↔) = (=), by funext a b; exact iff_eq_eq,
by rw [this, eq_comp]
lemma comp_iff {r : α → Prop → Prop} : r ∘r (↔) = r :=
have (↔) = (=), by funext a b; exact iff_eq_eq,
by rw [this, comp_eq]
lemma comp_assoc : (r ∘r p) ∘r q = r ∘r p ∘r q :=
begin
funext a d, apply propext,
split,
exact λ ⟨c, ⟨b, hab, hbc⟩, hcd⟩, ⟨b, hab, c, hbc, hcd⟩,
exact λ ⟨b, hab, c, hbc, hcd⟩, ⟨c, ⟨b, hab, hbc⟩, hcd⟩
end
lemma flip_comp : flip (r ∘r p) = (flip p) ∘r (flip r) :=
begin
funext c a, apply propext,
split,
exact λ ⟨b, hab, hbc⟩, ⟨b, hbc, hab⟩,
exact λ ⟨b, hbc, hab⟩, ⟨b, hab, hbc⟩
end
end comp
/--
The map of a relation `r` through a pair of functions pushes the
relation to the codomains of the functions. The resulting relation is
defined by having pairs of terms related if they have preimages
related by `r`.
-/
protected def map (r : α → β → Prop) (f : α → γ) (g : β → δ) : γ → δ → Prop :=
λ c d, ∃ a b, r a b ∧ f a = c ∧ g b = d
variables {r : α → α → Prop} {a b c d : α}
/-- `refl_trans_gen r`: reflexive transitive closure of `r` -/
@[mk_iff relation.refl_trans_gen.cases_tail_iff]
inductive refl_trans_gen (r : α → α → Prop) (a : α) : α → Prop
| refl : refl_trans_gen a
| tail {b c} : refl_trans_gen b → r b c → refl_trans_gen c
attribute [refl] refl_trans_gen.refl
/-- `refl_gen r`: reflexive closure of `r` -/
@[mk_iff] inductive refl_gen (r : α → α → Prop) (a : α) : α → Prop
| refl : refl_gen a
| single {b} : r a b → refl_gen b
/-- `trans_gen r`: transitive closure of `r` -/
@[mk_iff] inductive trans_gen (r : α → α → Prop) (a : α) : α → Prop
| single {b} : r a b → trans_gen b
| tail {b c} : trans_gen b → r b c → trans_gen c
attribute [refl] refl_gen.refl
namespace refl_gen
lemma to_refl_trans_gen : ∀ {a b}, refl_gen r a b → refl_trans_gen r a b
| a _ refl := by refl
| a b (single h) := refl_trans_gen.tail refl_trans_gen.refl h
lemma mono {p : α → α → Prop} (hp : ∀ a b, r a b → p a b) : ∀ {a b}, refl_gen r a b → refl_gen p a b
| a _ refl_gen.refl := by refl
| a b (single h) := single (hp a b h)
instance : is_refl α (refl_gen r) :=
⟨@refl α r⟩
end refl_gen
namespace refl_trans_gen
@[trans]
lemma trans (hab : refl_trans_gen r a b) (hbc : refl_trans_gen r b c) : refl_trans_gen r a c :=
begin
induction hbc,
case refl_trans_gen.refl { assumption },
case refl_trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd }
end
lemma single (hab : r a b) : refl_trans_gen r a b :=
refl.tail hab
lemma head (hab : r a b) (hbc : refl_trans_gen r b c) : refl_trans_gen r a c :=
begin
induction hbc,
case refl_trans_gen.refl { exact refl.tail hab },
case refl_trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd }
end
lemma symmetric (h : symmetric r) : symmetric (refl_trans_gen r) :=
begin
intros x y h,
induction h with z w a b c,
{ refl },
{ apply relation.refl_trans_gen.head (h b) c }
end
lemma cases_tail : refl_trans_gen r a b → b = a ∨ (∃ c, refl_trans_gen r a c ∧ r c b) :=
(cases_tail_iff r a b).1
@[elab_as_eliminator]
lemma head_induction_on
{P : ∀ (a:α), refl_trans_gen r a b → Prop}
{a : α} (h : refl_trans_gen r a b)
(refl : P b refl)
(head : ∀ {a c} (h' : r a c) (h : refl_trans_gen r c b), P c h → P a (h.head h')) :
P a h :=
begin
induction h generalizing P,
case refl_trans_gen.refl { exact refl },
case refl_trans_gen.tail : b c hab hbc ih
{ apply ih,
show P b _, from head hbc _ refl,
show ∀ a a', r a a' → refl_trans_gen r a' b → P a' _ → P a _,
from λ a a' hab hbc, head hab _ }
end
@[elab_as_eliminator]
lemma trans_induction_on
{P : ∀ {a b : α}, refl_trans_gen r a b → Prop}
{a b : α} (h : refl_trans_gen r a b)
(ih₁ : ∀ a, @P a a refl)
(ih₂ : ∀ {a b} (h : r a b), P (single h))
(ih₃ : ∀ {a b c} (h₁ : refl_trans_gen r a b) (h₂ : refl_trans_gen r b c),
P h₁ → P h₂ → P (h₁.trans h₂)) :
P h :=
begin
induction h,
case refl_trans_gen.refl { exact ih₁ a },
case refl_trans_gen.tail : b c hab hbc ih { exact ih₃ hab (single hbc) ih (ih₂ hbc) }
end
lemma cases_head (h : refl_trans_gen r a b) : a = b ∨ (∃ c, r a c ∧ refl_trans_gen r c b) :=
begin
induction h using relation.refl_trans_gen.head_induction_on,
{ left, refl },
{ right, existsi _, split; assumption }
end
lemma cases_head_iff : refl_trans_gen r a b ↔ a = b ∨ (∃ c, r a c ∧ refl_trans_gen r c b) :=
begin
use cases_head,
rintro (rfl | ⟨c, hac, hcb⟩),
{ refl },
{ exact head hac hcb }
end
lemma total_of_right_unique (U : relator.right_unique r)
(ab : refl_trans_gen r a b) (ac : refl_trans_gen r a c) :
refl_trans_gen r b c ∨ refl_trans_gen r c b :=
begin
induction ab with b d ab bd IH,
{ exact or.inl ac },
{ rcases IH with IH | IH,
{ rcases cases_head IH with rfl | ⟨e, be, ec⟩,
{ exact or.inr (single bd) },
{ cases U bd be, exact or.inl ec } },
{ exact or.inr (IH.tail bd) } }
end
end refl_trans_gen
namespace trans_gen
lemma to_refl {a b} (h : trans_gen r a b) : refl_trans_gen r a b :=
begin
induction h with b h b c _ bc ab,
exact refl_trans_gen.single h,
exact refl_trans_gen.tail ab bc
end
@[trans] lemma trans_left (hab : trans_gen r a b) (hbc : refl_trans_gen r b c) : trans_gen r a c :=
begin
induction hbc,
case refl_trans_gen.refl : { assumption },
case refl_trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd }
end
@[trans] lemma trans (hab : trans_gen r a b) (hbc : trans_gen r b c) : trans_gen r a c :=
trans_left hab hbc.to_refl
lemma head' (hab : r a b) (hbc : refl_trans_gen r b c) : trans_gen r a c :=
trans_left (single hab) hbc
lemma tail' (hab : refl_trans_gen r a b) (hbc : r b c) : trans_gen r a c :=
begin
induction hab generalizing c,
case refl_trans_gen.refl : c hac { exact single hac },
case refl_trans_gen.tail : d b hab hdb IH { exact tail (IH hdb) hbc }
end
lemma head (hab : r a b) (hbc : trans_gen r b c) : trans_gen r a c :=
head' hab hbc.to_refl
@[elab_as_eliminator]
lemma head_induction_on
{P : ∀ (a:α), trans_gen r a b → Prop}
{a : α} (h : trans_gen r a b)
(base : ∀ {a} (h : r a b), P a (single h))
(ih : ∀ {a c} (h' : r a c) (h : trans_gen r c b), P c h → P a (h.head h')) :
P a h :=
begin
induction h generalizing P,
case single : a h { exact base h },
case tail : b c hab hbc h_ih
{ apply h_ih,
show ∀ a, r a b → P a _, from λ a h, ih h (single hbc) (base hbc),
show ∀ a a', r a a' → trans_gen r a' b → P a' _ → P a _, from λ a a' hab hbc, ih hab _ }
end
@[elab_as_eliminator]
lemma trans_induction_on
{P : ∀ {a b : α}, trans_gen r a b → Prop}
{a b : α} (h : trans_gen r a b)
(base : ∀ {a b} (h : r a b), P (single h))
(ih : ∀ {a b c} (h₁ : trans_gen r a b) (h₂ : trans_gen r b c), P h₁ → P h₂ → P (h₁.trans h₂)) :
P h :=
begin
induction h,
case single : a h { exact base h },
case tail : b c hab hbc h_ih { exact ih hab (single hbc) h_ih (base hbc) }
end
@[trans] lemma trans_right (hab : refl_trans_gen r a b) (hbc : trans_gen r b c) : trans_gen r a c :=
begin
induction hbc,
case trans_gen.single : c hbc { exact tail' hab hbc },
case trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd }
end
lemma tail'_iff : trans_gen r a c ↔ ∃ b, refl_trans_gen r a b ∧ r b c :=
begin
refine ⟨λ h, _, λ ⟨b, hab, hbc⟩, tail' hab hbc⟩,
cases h with _ hac b _ hab hbc,
{ exact ⟨_, by refl, hac⟩ },
{ exact ⟨_, hab.to_refl, hbc⟩ }
end
lemma head'_iff : trans_gen r a c ↔ ∃ b, r a b ∧ refl_trans_gen r b c :=
begin
refine ⟨λ h, _, λ ⟨b, hab, hbc⟩, head' hab hbc⟩,
induction h,
case trans_gen.single : c hac { exact ⟨_, hac, by refl⟩ },
case trans_gen.tail : b c hab hbc IH
{ rcases IH with ⟨d, had, hdb⟩, exact ⟨_, had, hdb.tail hbc⟩ }
end
end trans_gen
lemma _root_.acc.trans_gen {α} {r : α → α → Prop} {a : α} (h : acc r a) : acc (trans_gen r) a :=
begin
induction h with x _ H,
refine acc.intro x (λ y hy, _),
cases hy with _ hyx z _ hyz hzx,
exacts [H y hyx, (H z hzx).inv hyz],
end
lemma _root_.well_founded.trans_gen {α} {r : α → α → Prop} (h : well_founded r) :
well_founded (trans_gen r) := ⟨λ a, (h.apply a).trans_gen⟩
section trans_gen
lemma trans_gen_eq_self (trans : transitive r) :
trans_gen r = r :=
funext $ λ a, funext $ λ b, propext $
⟨λ h, begin
induction h,
case trans_gen.single : c hc { exact hc },
case trans_gen.tail : c d hac hcd hac { exact trans hac hcd }
end,
trans_gen.single⟩
lemma transitive_trans_gen : transitive (trans_gen r) :=
λ a b c, trans_gen.trans
instance : is_trans α (trans_gen r) :=
⟨@trans_gen.trans α r⟩
lemma trans_gen_idem :
trans_gen (trans_gen r) = trans_gen r :=
trans_gen_eq_self transitive_trans_gen
lemma trans_gen.lift {p : β → β → Prop} {a b : α} (f : α → β)
(h : ∀ a b, r a b → p (f a) (f b)) (hab : trans_gen r a b) : trans_gen p (f a) (f b) :=
begin
induction hab,
case trans_gen.single : c hac { exact trans_gen.single (h a c hac) },
case trans_gen.tail : c d hac hcd hac { exact trans_gen.tail hac (h c d hcd) }
end
lemma trans_gen.lift' {p : β → β → Prop} {a b : α} (f : α → β)
(h : ∀ a b, r a b → trans_gen p (f a) (f b))
(hab : trans_gen r a b) : trans_gen p (f a) (f b) :=
by simpa [trans_gen_idem] using hab.lift f h
lemma trans_gen.closed {p : α → α → Prop} :
(∀ a b, r a b → trans_gen p a b) → trans_gen r a b → trans_gen p a b :=
trans_gen.lift' id
lemma trans_gen.mono {p : α → α → Prop} :
(∀ a b, r a b → p a b) → trans_gen r a b → trans_gen p a b :=
trans_gen.lift id
lemma trans_gen.swap (h : trans_gen r b a) : trans_gen (swap r) a b :=
by { induction h with b h b c hab hbc ih, { exact trans_gen.single h }, exact ih.head hbc }
lemma trans_gen_swap : trans_gen (swap r) a b ↔ trans_gen r b a :=
⟨trans_gen.swap, trans_gen.swap⟩
end trans_gen
section refl_trans_gen
open refl_trans_gen
lemma refl_trans_gen_iff_eq (h : ∀ b, ¬ r a b) : refl_trans_gen r a b ↔ b = a :=
by rw [cases_head_iff]; simp [h, eq_comm]
lemma refl_trans_gen_iff_eq_or_trans_gen :
refl_trans_gen r a b ↔ b = a ∨ trans_gen r a b :=
begin
refine ⟨λ h, _, λ h, _⟩,
{ cases h with c _ hac hcb,
{ exact or.inl rfl },
{ exact or.inr (trans_gen.tail' hac hcb) } },
{ rcases h with rfl | h, {refl}, {exact h.to_refl} }
end
lemma refl_trans_gen.lift {p : β → β → Prop} {a b : α} (f : α → β)
(h : ∀ a b, r a b → p (f a) (f b)) (hab : refl_trans_gen r a b) : refl_trans_gen p (f a) (f b) :=
refl_trans_gen.trans_induction_on hab (λ a, refl)
(λ a b, refl_trans_gen.single ∘ h _ _) (λ a b c _ _, trans)
lemma refl_trans_gen.mono {p : α → α → Prop} :
(∀ a b, r a b → p a b) → refl_trans_gen r a b → refl_trans_gen p a b :=
refl_trans_gen.lift id
lemma refl_trans_gen_eq_self (refl : reflexive r) (trans : transitive r) :
refl_trans_gen r = r :=
funext $ λ a, funext $ λ b, propext $
⟨λ h, begin
induction h with b c h₁ h₂ IH, {apply refl},
exact trans IH h₂,
end, single⟩
lemma reflexive_refl_trans_gen : reflexive (refl_trans_gen r) :=
λ a, refl
lemma transitive_refl_trans_gen : transitive (refl_trans_gen r) :=
λ a b c, trans
instance : is_refl α (refl_trans_gen r) :=
⟨@refl_trans_gen.refl α r⟩
instance : is_trans α (refl_trans_gen r) :=
⟨@refl_trans_gen.trans α r⟩
lemma refl_trans_gen_idem :
refl_trans_gen (refl_trans_gen r) = refl_trans_gen r :=
refl_trans_gen_eq_self reflexive_refl_trans_gen transitive_refl_trans_gen
lemma refl_trans_gen.lift' {p : β → β → Prop} {a b : α} (f : α → β)
(h : ∀ a b, r a b → refl_trans_gen p (f a) (f b))
(hab : refl_trans_gen r a b) : refl_trans_gen p (f a) (f b) :=
by simpa [refl_trans_gen_idem] using hab.lift f h
lemma refl_trans_gen_closed {p : α → α → Prop} :
(∀ a b, r a b → refl_trans_gen p a b) → refl_trans_gen r a b → refl_trans_gen p a b :=
refl_trans_gen.lift' id
lemma refl_trans_gen.swap (h : refl_trans_gen r b a) : refl_trans_gen (swap r) a b :=
by { induction h with b c hab hbc ih, { refl }, exact ih.head hbc }
lemma refl_trans_gen_swap : refl_trans_gen (swap r) a b ↔ refl_trans_gen r b a :=
⟨refl_trans_gen.swap, refl_trans_gen.swap⟩
end refl_trans_gen
/--
The join of a relation on a single type is a new relation for which
pairs of terms are related if there is a third term they are both
related to. For example, if `r` is a relation representing rewrites
in a term rewriting system, then *confluence* is the property that if
`a` rewrites to both `b` and `c`, then `join r` relates `b` and `c`
(see `relation.church_rosser`).
-/
def join (r : α → α → Prop) : α → α → Prop := λ a b, ∃ c, r a c ∧ r b c
section join
open refl_trans_gen refl_gen
/-- A sufficient condition for the Church-Rosser property. -/
lemma church_rosser
(h : ∀ a b c, r a b → r a c → ∃ d, refl_gen r b d ∧ refl_trans_gen r c d)
(hab : refl_trans_gen r a b) (hac : refl_trans_gen r a c) : join (refl_trans_gen r) b c :=
begin
induction hab,
case refl_trans_gen.refl { exact ⟨c, hac, refl⟩ },
case refl_trans_gen.tail : d e had hde ih
{ clear hac had a,
rcases ih with ⟨b, hdb, hcb⟩,
have : ∃ a, refl_trans_gen r e a ∧ refl_gen r b a,
{ clear hcb, induction hdb,
case refl_trans_gen.refl { exact ⟨e, refl, refl_gen.single hde⟩ },
case refl_trans_gen.tail : f b hdf hfb ih
{ rcases ih with ⟨a, hea, hfa⟩,
cases hfa with _ hfa,
{ exact ⟨b, hea.tail hfb, refl_gen.refl⟩ },
{ rcases h _ _ _ hfb hfa with ⟨c, hbc, hac⟩,
exact ⟨c, hea.trans hac, hbc⟩ } } },
rcases this with ⟨a, hea, hba⟩, cases hba with _ hba,
{ exact ⟨b, hea, hcb⟩ },
{ exact ⟨a, hea, hcb.tail hba⟩ } }
end
lemma join_of_single (h : reflexive r) (hab : r a b) : join r a b :=
⟨b, hab, h b⟩
lemma symmetric_join : symmetric (join r) :=
λ a b ⟨c, hac, hcb⟩, ⟨c, hcb, hac⟩
lemma reflexive_join (h : reflexive r) : reflexive (join r) :=
λ a, ⟨a, h a, h a⟩
lemma transitive_join (ht : transitive r) (h : ∀ a b c, r a b → r a c → join r b c) :
transitive (join r) :=
λ a b c ⟨x, hax, hbx⟩ ⟨y, hby, hcy⟩,
let ⟨z, hxz, hyz⟩ := h b x y hbx hby in
⟨z, ht hax hxz, ht hcy hyz⟩
lemma equivalence_join (hr : reflexive r) (ht : transitive r)
(h : ∀ a b c, r a b → r a c → join r b c) :
equivalence (join r) :=
⟨reflexive_join hr, symmetric_join, transitive_join ht h⟩
lemma equivalence_join_refl_trans_gen
(h : ∀ a b c, r a b → r a c → ∃ d, refl_gen r b d ∧ refl_trans_gen r c d) :
equivalence (join (refl_trans_gen r)) :=
equivalence_join reflexive_refl_trans_gen transitive_refl_trans_gen (λ a b c, church_rosser h)
lemma join_of_equivalence {r' : α → α → Prop} (hr : equivalence r)
(h : ∀ a b, r' a b → r a b) : join r' a b → r a b
| ⟨c, hac, hbc⟩ := hr.2.2 (h _ _ hac) (hr.2.1 $ h _ _ hbc)
lemma refl_trans_gen_of_transitive_reflexive {r' : α → α → Prop} (hr : reflexive r)
(ht : transitive r) (h : ∀ a b, r' a b → r a b) (h' : refl_trans_gen r' a b) :
r a b :=
begin
induction h' with b c hab hbc ih,
{ exact hr _ },
{ exact ht ih (h _ _ hbc) }
end
lemma refl_trans_gen_of_equivalence {r' : α → α → Prop} (hr : equivalence r) :
(∀ a b, r' a b → r a b) → refl_trans_gen r' a b → r a b :=
refl_trans_gen_of_transitive_reflexive hr.1 hr.2.2
end join
end relation
section eqv_gen
variables {r : α → α → Prop} {a b : α}
lemma equivalence.eqv_gen_iff (h : equivalence r) : eqv_gen r a b ↔ r a b :=
iff.intro
begin
intro h,
induction h,
case eqv_gen.rel { assumption },
case eqv_gen.refl { exact h.1 _ },
case eqv_gen.symm { apply h.2.1, assumption },
case eqv_gen.trans : a b c _ _ hab hbc { exact h.2.2 hab hbc }
end
(eqv_gen.rel a b)
lemma equivalence.eqv_gen_eq (h : equivalence r) : eqv_gen r = r :=
funext $ λ _, funext $ λ _, propext $ h.eqv_gen_iff
lemma eqv_gen.mono {r p : α → α → Prop}
(hrp : ∀ a b, r a b → p a b) (h : eqv_gen r a b) : eqv_gen p a b :=
begin
induction h,
case eqv_gen.rel : a b h { exact eqv_gen.rel _ _ (hrp _ _ h) },
case eqv_gen.refl : { exact eqv_gen.refl _ },
case eqv_gen.symm : a b h ih { exact eqv_gen.symm _ _ ih },
case eqv_gen.trans : a b c ih1 ih2 hab hbc { exact eqv_gen.trans _ _ _ hab hbc }
end
end eqv_gen