Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,590 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import tactic.basic
import logic.relator
/-!
# Relation closures
This file defines the reflexive, transitive, and reflexive transitive closures of relations.
It also proves some basic results on definitions in core, such as `eqv_gen`.
Note that this is about unbundled relations, that is terms of types of the form `α → β → Prop`. For
the bundled version, see `rel`.
## Definitions
* `relation.refl_gen`: Reflexive closure. `refl_gen r` relates everything `r` related, plus for all
`a` it relates `a` with itself. So `refl_gen r a b ↔ r a b ∨ a = b`.
* `relation.trans_gen`: Transitive closure. `trans_gen r` relates everything `r` related
transitively. So `trans_gen r a b ↔ ∃ x₀ ... xₙ, r a x₀ ∧ r x₀ x₁ ∧ ... ∧ r xₙ b`.
* `relation.refl_trans_gen`: Reflexive transitive closure. `refl_trans_gen r` relates everything
`r` related transitively, plus for all `a` it relates `a` with itself. So
`refl_trans_gen r a b ↔ (∃ x₀ ... xₙ, r a x₀ ∧ r x₀ x₁ ∧ ... ∧ r xₙ b) ∨ a = b`. It is the same as
the reflexive closure of the transitive closure, or the transitive closure of the reflexive
closure. In terms of rewriting systems, this means that `a` can be rewritten to `b` in a number of
rewrites.
* `relation.comp`: Relation composition. We provide notation `∘r`. For `r : α → β → Prop` and
`s : β → γ → Prop`, `r ∘r s`relates `a : α` and `c : γ` iff there exists `b : β` that's related to
both.
* `relation.map`: Image of a relation under a pair of maps. For `r : α → β → Prop`, `f : α → γ`,
`g : β → δ`, `map r f g` is the relation `γ → δ → Prop` relating `f a` and `g b` for all `a`, `b`
related by `r`.
* `relation.join`: Join of a relation. For `r : α → α → Prop`, `join r a b ↔ ∃ c, r a c ∧ r b c`. In
terms of rewriting systems, this means that `a` and `b` can be rewritten to the same term.
-/
open function
variables {α β γ δ : Type*}
section ne_imp
variable {r : α → α → Prop}
lemma is_refl.reflexive [is_refl α r] : reflexive r :=
λ x, is_refl.refl x
/-- To show a reflexive relation `r : α → α → Prop` holds over `x y : α`,
it suffices to show it holds when `x ≠ y`. -/
lemma reflexive.rel_of_ne_imp (h : reflexive r) {x y : α} (hr : x ≠ y → r x y) : r x y :=
begin
by_cases hxy : x = y,
{ exact hxy ▸ h x },
{ exact hr hxy }
end
/-- If a reflexive relation `r : α → α → Prop` holds over `x y : α`,
then it holds whether or not `x ≠ y`. -/
lemma reflexive.ne_imp_iff (h : reflexive r) {x y : α} :
(x ≠ y → r x y) ↔ r x y :=
⟨h.rel_of_ne_imp, λ hr _, hr⟩
/-- If a reflexive relation `r : α → α → Prop` holds over `x y : α`,
then it holds whether or not `x ≠ y`. Unlike `reflexive.ne_imp_iff`, this uses `[is_refl α r]`. -/
lemma reflexive_ne_imp_iff [is_refl α r] {x y : α} :
(x ≠ y → r x y) ↔ r x y :=
is_refl.reflexive.ne_imp_iff
protected lemma symmetric.iff (H : symmetric r) (x y : α) : r x y ↔ r y x := ⟨λ h, H h, λ h, H h⟩
lemma symmetric.flip_eq (h : symmetric r) : flip r = r := funext₂ $ λ _ _, propext $ h.iff _ _
lemma symmetric.swap_eq : symmetric r → swap r = r := symmetric.flip_eq
lemma flip_eq_iff : flip r = r ↔ symmetric r := ⟨λ h x y, (congr_fun₂ h _ _).mp, symmetric.flip_eq⟩
lemma swap_eq_iff : swap r = r ↔ symmetric r := flip_eq_iff
end ne_imp
section comap
variables {r : β → β → Prop}
lemma reflexive.comap (h : reflexive r) (f : α → β) : reflexive (r on f) :=
λ a, h (f a)
lemma symmetric.comap (h : symmetric r) (f : α → β) : symmetric (r on f) :=
λ a b hab, h hab
lemma transitive.comap (h : transitive r) (f : α → β) : transitive (r on f) :=
λ a b c hab hbc, h hab hbc
lemma equivalence.comap (h : equivalence r) (f : α → β) : equivalence (r on f) :=
⟨h.1.comap f, h.2.1.comap f, h.2.2.comap f⟩
end comap
namespace relation
section comp
variables {r : α → β → Prop} {p : β → γ → Prop} {q : γ → δ → Prop}
/--
The composition of two relations, yielding a new relation. The result
relates a term of `α` and a term of `γ` if there is an intermediate
term of `β` related to both.
-/
def comp (r : α → β → Prop) (p : β → γ → Prop) (a : α) (c : γ) : Prop := ∃ b, r a b ∧ p b c
local infixr ` ∘r ` : 80 := relation.comp
lemma comp_eq : r ∘r (=) = r :=
funext $ λ a, funext $ λ b, propext $ iff.intro
(λ ⟨c, h, eq⟩, eq ▸ h)
(λ h, ⟨b, h, rfl⟩)
lemma eq_comp : (=) ∘r r = r :=
funext $ λ a, funext $ λ b, propext $ iff.intro
(λ ⟨c, eq, h⟩, eq.symm ▸ h)
(λ h, ⟨a, rfl, h⟩)
lemma iff_comp {r : Prop → α → Prop} : (↔) ∘r r = r :=
have (↔) = (=), by funext a b; exact iff_eq_eq,
by rw [this, eq_comp]
lemma comp_iff {r : α → Prop → Prop} : r ∘r (↔) = r :=
have (↔) = (=), by funext a b; exact iff_eq_eq,
by rw [this, comp_eq]
lemma comp_assoc : (r ∘r p) ∘r q = r ∘r p ∘r q :=
begin
funext a d, apply propext,
split,
exact λ ⟨c, ⟨b, hab, hbc⟩, hcd⟩, ⟨b, hab, c, hbc, hcd⟩,
exact λ ⟨b, hab, c, hbc, hcd⟩, ⟨c, ⟨b, hab, hbc⟩, hcd⟩
end
lemma flip_comp : flip (r ∘r p) = (flip p) ∘r (flip r) :=
begin
funext c a, apply propext,
split,
exact λ ⟨b, hab, hbc⟩, ⟨b, hbc, hab⟩,
exact λ ⟨b, hbc, hab⟩, ⟨b, hab, hbc⟩
end
end comp
/--
The map of a relation `r` through a pair of functions pushes the
relation to the codomains of the functions. The resulting relation is
defined by having pairs of terms related if they have preimages
related by `r`.
-/
protected def map (r : α → β → Prop) (f : α → γ) (g : β → δ) : γ → δ → Prop :=
λ c d, ∃ a b, r a b ∧ f a = c ∧ g b = d
variables {r : α → α → Prop} {a b c d : α}
/-- `refl_trans_gen r`: reflexive transitive closure of `r` -/
@[mk_iff relation.refl_trans_gen.cases_tail_iff]
inductive refl_trans_gen (r : α → α → Prop) (a : α) : α → Prop
| refl : refl_trans_gen a
| tail {b c} : refl_trans_gen b → r b c → refl_trans_gen c
attribute [refl] refl_trans_gen.refl
/-- `refl_gen r`: reflexive closure of `r` -/
@[mk_iff] inductive refl_gen (r : α → α → Prop) (a : α) : α → Prop
| refl : refl_gen a
| single {b} : r a b → refl_gen b
/-- `trans_gen r`: transitive closure of `r` -/
@[mk_iff] inductive trans_gen (r : α → α → Prop) (a : α) : α → Prop
| single {b} : r a b → trans_gen b
| tail {b c} : trans_gen b → r b c → trans_gen c
attribute [refl] refl_gen.refl
namespace refl_gen
lemma to_refl_trans_gen : ∀ {a b}, refl_gen r a b → refl_trans_gen r a b
| a _ refl := by refl
| a b (single h) := refl_trans_gen.tail refl_trans_gen.refl h
lemma mono {p : α → α → Prop} (hp : ∀ a b, r a b → p a b) : ∀ {a b}, refl_gen r a b → refl_gen p a b
| a _ refl_gen.refl := by refl
| a b (single h) := single (hp a b h)
instance : is_refl α (refl_gen r) :=
⟨@refl α r⟩
end refl_gen
namespace refl_trans_gen
@[trans]
lemma trans (hab : refl_trans_gen r a b) (hbc : refl_trans_gen r b c) : refl_trans_gen r a c :=
begin
induction hbc,
case refl_trans_gen.refl { assumption },
case refl_trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd }
end
lemma single (hab : r a b) : refl_trans_gen r a b :=
refl.tail hab
lemma head (hab : r a b) (hbc : refl_trans_gen r b c) : refl_trans_gen r a c :=
begin
induction hbc,
case refl_trans_gen.refl { exact refl.tail hab },
case refl_trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd }
end
lemma symmetric (h : symmetric r) : symmetric (refl_trans_gen r) :=
begin
intros x y h,
induction h with z w a b c,
{ refl },
{ apply relation.refl_trans_gen.head (h b) c }
end
lemma cases_tail : refl_trans_gen r a b → b = a ∨ (∃ c, refl_trans_gen r a c ∧ r c b) :=
(cases_tail_iff r a b).1
@[elab_as_eliminator]
lemma head_induction_on
{P : ∀ (a:α), refl_trans_gen r a b → Prop}
{a : α} (h : refl_trans_gen r a b)
(refl : P b refl)
(head : ∀ {a c} (h' : r a c) (h : refl_trans_gen r c b), P c h → P a (h.head h')) :
P a h :=
begin
induction h generalizing P,
case refl_trans_gen.refl { exact refl },
case refl_trans_gen.tail : b c hab hbc ih
{ apply ih,
show P b _, from head hbc _ refl,
show ∀ a a', r a a' → refl_trans_gen r a' b → P a' _ → P a _,
from λ a a' hab hbc, head hab _ }
end
@[elab_as_eliminator]
lemma trans_induction_on
{P : ∀ {a b : α}, refl_trans_gen r a b → Prop}
{a b : α} (h : refl_trans_gen r a b)
(ih₁ : ∀ a, @P a a refl)
(ih₂ : ∀ {a b} (h : r a b), P (single h))
(ih₃ : ∀ {a b c} (h₁ : refl_trans_gen r a b) (h₂ : refl_trans_gen r b c),
P h₁ → P h₂ → P (h₁.trans h₂)) :
P h :=
begin
induction h,
case refl_trans_gen.refl { exact ih₁ a },
case refl_trans_gen.tail : b c hab hbc ih { exact ih₃ hab (single hbc) ih (ih₂ hbc) }
end
lemma cases_head (h : refl_trans_gen r a b) : a = b ∨ (∃ c, r a c ∧ refl_trans_gen r c b) :=
begin
induction h using relation.refl_trans_gen.head_induction_on,
{ left, refl },
{ right, existsi _, split; assumption }
end
lemma cases_head_iff : refl_trans_gen r a b ↔ a = b ∨ (∃ c, r a c ∧ refl_trans_gen r c b) :=
begin
use cases_head,
rintro (rfl | ⟨c, hac, hcb⟩),
{ refl },
{ exact head hac hcb }
end
lemma total_of_right_unique (U : relator.right_unique r)
(ab : refl_trans_gen r a b) (ac : refl_trans_gen r a c) :
refl_trans_gen r b c ∨ refl_trans_gen r c b :=
begin
induction ab with b d ab bd IH,
{ exact or.inl ac },
{ rcases IH with IH | IH,
{ rcases cases_head IH with rfl | ⟨e, be, ec⟩,
{ exact or.inr (single bd) },
{ cases U bd be, exact or.inl ec } },
{ exact or.inr (IH.tail bd) } }
end
end refl_trans_gen
namespace trans_gen
lemma to_refl {a b} (h : trans_gen r a b) : refl_trans_gen r a b :=
begin
induction h with b h b c _ bc ab,
exact refl_trans_gen.single h,
exact refl_trans_gen.tail ab bc
end
@[trans] lemma trans_left (hab : trans_gen r a b) (hbc : refl_trans_gen r b c) : trans_gen r a c :=
begin
induction hbc,
case refl_trans_gen.refl : { assumption },
case refl_trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd }
end
@[trans] lemma trans (hab : trans_gen r a b) (hbc : trans_gen r b c) : trans_gen r a c :=
trans_left hab hbc.to_refl
lemma head' (hab : r a b) (hbc : refl_trans_gen r b c) : trans_gen r a c :=
trans_left (single hab) hbc
lemma tail' (hab : refl_trans_gen r a b) (hbc : r b c) : trans_gen r a c :=
begin
induction hab generalizing c,
case refl_trans_gen.refl : c hac { exact single hac },
case refl_trans_gen.tail : d b hab hdb IH { exact tail (IH hdb) hbc }
end
lemma head (hab : r a b) (hbc : trans_gen r b c) : trans_gen r a c :=
head' hab hbc.to_refl
@[elab_as_eliminator]
lemma head_induction_on
{P : ∀ (a:α), trans_gen r a b → Prop}
{a : α} (h : trans_gen r a b)
(base : ∀ {a} (h : r a b), P a (single h))
(ih : ∀ {a c} (h' : r a c) (h : trans_gen r c b), P c h → P a (h.head h')) :
P a h :=
begin
induction h generalizing P,
case single : a h { exact base h },
case tail : b c hab hbc h_ih
{ apply h_ih,
show ∀ a, r a b → P a _, from λ a h, ih h (single hbc) (base hbc),
show ∀ a a', r a a' → trans_gen r a' b → P a' _ → P a _, from λ a a' hab hbc, ih hab _ }
end
@[elab_as_eliminator]
lemma trans_induction_on
{P : ∀ {a b : α}, trans_gen r a b → Prop}
{a b : α} (h : trans_gen r a b)
(base : ∀ {a b} (h : r a b), P (single h))
(ih : ∀ {a b c} (h₁ : trans_gen r a b) (h₂ : trans_gen r b c), P h₁ → P h₂ → P (h₁.trans h₂)) :
P h :=
begin
induction h,
case single : a h { exact base h },
case tail : b c hab hbc h_ih { exact ih hab (single hbc) h_ih (base hbc) }
end
@[trans] lemma trans_right (hab : refl_trans_gen r a b) (hbc : trans_gen r b c) : trans_gen r a c :=
begin
induction hbc,
case trans_gen.single : c hbc { exact tail' hab hbc },
case trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd }
end
lemma tail'_iff : trans_gen r a c ↔ ∃ b, refl_trans_gen r a b ∧ r b c :=
begin
refine ⟨λ h, _, λ ⟨b, hab, hbc⟩, tail' hab hbc⟩,
cases h with _ hac b _ hab hbc,
{ exact ⟨_, by refl, hac⟩ },
{ exact ⟨_, hab.to_refl, hbc⟩ }
end
lemma head'_iff : trans_gen r a c ↔ ∃ b, r a b ∧ refl_trans_gen r b c :=
begin
refine ⟨λ h, _, λ ⟨b, hab, hbc⟩, head' hab hbc⟩,
induction h,
case trans_gen.single : c hac { exact ⟨_, hac, by refl⟩ },
case trans_gen.tail : b c hab hbc IH
{ rcases IH with ⟨d, had, hdb⟩, exact ⟨_, had, hdb.tail hbc⟩ }
end
end trans_gen
lemma _root_.acc.trans_gen {α} {r : α → α → Prop} {a : α} (h : acc r a) : acc (trans_gen r) a :=
begin
induction h with x _ H,
refine acc.intro x (λ y hy, _),
cases hy with _ hyx z _ hyz hzx,
exacts [H y hyx, (H z hzx).inv hyz],
end
lemma _root_.well_founded.trans_gen {α} {r : α → α → Prop} (h : well_founded r) :
well_founded (trans_gen r) := ⟨λ a, (h.apply a).trans_gen⟩
section trans_gen
lemma trans_gen_eq_self (trans : transitive r) :
trans_gen r = r :=
funext $ λ a, funext $ λ b, propext $
⟨λ h, begin
induction h,
case trans_gen.single : c hc { exact hc },
case trans_gen.tail : c d hac hcd hac { exact trans hac hcd }
end,
trans_gen.single⟩
lemma transitive_trans_gen : transitive (trans_gen r) :=
λ a b c, trans_gen.trans
instance : is_trans α (trans_gen r) :=
⟨@trans_gen.trans α r⟩
lemma trans_gen_idem :
trans_gen (trans_gen r) = trans_gen r :=
trans_gen_eq_self transitive_trans_gen
lemma trans_gen.lift {p : β → β → Prop} {a b : α} (f : α → β)
(h : ∀ a b, r a b → p (f a) (f b)) (hab : trans_gen r a b) : trans_gen p (f a) (f b) :=
begin
induction hab,
case trans_gen.single : c hac { exact trans_gen.single (h a c hac) },
case trans_gen.tail : c d hac hcd hac { exact trans_gen.tail hac (h c d hcd) }
end
lemma trans_gen.lift' {p : β → β → Prop} {a b : α} (f : α → β)
(h : ∀ a b, r a b → trans_gen p (f a) (f b))
(hab : trans_gen r a b) : trans_gen p (f a) (f b) :=
by simpa [trans_gen_idem] using hab.lift f h
lemma trans_gen.closed {p : α → α → Prop} :
(∀ a b, r a b → trans_gen p a b) → trans_gen r a b → trans_gen p a b :=
trans_gen.lift' id
lemma trans_gen.mono {p : α → α → Prop} :
(∀ a b, r a b → p a b) → trans_gen r a b → trans_gen p a b :=
trans_gen.lift id
lemma trans_gen.swap (h : trans_gen r b a) : trans_gen (swap r) a b :=
by { induction h with b h b c hab hbc ih, { exact trans_gen.single h }, exact ih.head hbc }
lemma trans_gen_swap : trans_gen (swap r) a b ↔ trans_gen r b a :=
⟨trans_gen.swap, trans_gen.swap⟩
end trans_gen
section refl_trans_gen
open refl_trans_gen
lemma refl_trans_gen_iff_eq (h : ∀ b, ¬ r a b) : refl_trans_gen r a b ↔ b = a :=
by rw [cases_head_iff]; simp [h, eq_comm]
lemma refl_trans_gen_iff_eq_or_trans_gen :
refl_trans_gen r a b ↔ b = a ∨ trans_gen r a b :=
begin
refine ⟨λ h, _, λ h, _⟩,
{ cases h with c _ hac hcb,
{ exact or.inl rfl },
{ exact or.inr (trans_gen.tail' hac hcb) } },
{ rcases h with rfl | h, {refl}, {exact h.to_refl} }
end
lemma refl_trans_gen.lift {p : β → β → Prop} {a b : α} (f : α → β)
(h : ∀ a b, r a b → p (f a) (f b)) (hab : refl_trans_gen r a b) : refl_trans_gen p (f a) (f b) :=
refl_trans_gen.trans_induction_on hab (λ a, refl)
(λ a b, refl_trans_gen.single ∘ h _ _) (λ a b c _ _, trans)
lemma refl_trans_gen.mono {p : α → α → Prop} :
(∀ a b, r a b → p a b) → refl_trans_gen r a b → refl_trans_gen p a b :=
refl_trans_gen.lift id
lemma refl_trans_gen_eq_self (refl : reflexive r) (trans : transitive r) :
refl_trans_gen r = r :=
funext $ λ a, funext $ λ b, propext $
⟨λ h, begin
induction h with b c h₁ h₂ IH, {apply refl},
exact trans IH h₂,
end, single⟩
lemma reflexive_refl_trans_gen : reflexive (refl_trans_gen r) :=
λ a, refl
lemma transitive_refl_trans_gen : transitive (refl_trans_gen r) :=
λ a b c, trans
instance : is_refl α (refl_trans_gen r) :=
⟨@refl_trans_gen.refl α r⟩
instance : is_trans α (refl_trans_gen r) :=
⟨@refl_trans_gen.trans α r⟩
lemma refl_trans_gen_idem :
refl_trans_gen (refl_trans_gen r) = refl_trans_gen r :=
refl_trans_gen_eq_self reflexive_refl_trans_gen transitive_refl_trans_gen
lemma refl_trans_gen.lift' {p : β → β → Prop} {a b : α} (f : α → β)
(h : ∀ a b, r a b → refl_trans_gen p (f a) (f b))
(hab : refl_trans_gen r a b) : refl_trans_gen p (f a) (f b) :=
by simpa [refl_trans_gen_idem] using hab.lift f h
lemma refl_trans_gen_closed {p : α → α → Prop} :
(∀ a b, r a b → refl_trans_gen p a b) → refl_trans_gen r a b → refl_trans_gen p a b :=
refl_trans_gen.lift' id
lemma refl_trans_gen.swap (h : refl_trans_gen r b a) : refl_trans_gen (swap r) a b :=
by { induction h with b c hab hbc ih, { refl }, exact ih.head hbc }
lemma refl_trans_gen_swap : refl_trans_gen (swap r) a b ↔ refl_trans_gen r b a :=
⟨refl_trans_gen.swap, refl_trans_gen.swap⟩
end refl_trans_gen
/--
The join of a relation on a single type is a new relation for which
pairs of terms are related if there is a third term they are both
related to. For example, if `r` is a relation representing rewrites
in a term rewriting system, then *confluence* is the property that if
`a` rewrites to both `b` and `c`, then `join r` relates `b` and `c`
(see `relation.church_rosser`).
-/
def join (r : α → α → Prop) : α → α → Prop := λ a b, ∃ c, r a c ∧ r b c
section join
open refl_trans_gen refl_gen
/-- A sufficient condition for the Church-Rosser property. -/
lemma church_rosser
(h : ∀ a b c, r a b → r a c → ∃ d, refl_gen r b d ∧ refl_trans_gen r c d)
(hab : refl_trans_gen r a b) (hac : refl_trans_gen r a c) : join (refl_trans_gen r) b c :=
begin
induction hab,
case refl_trans_gen.refl { exact ⟨c, hac, refl⟩ },
case refl_trans_gen.tail : d e had hde ih
{ clear hac had a,
rcases ih with ⟨b, hdb, hcb⟩,
have : ∃ a, refl_trans_gen r e a ∧ refl_gen r b a,
{ clear hcb, induction hdb,
case refl_trans_gen.refl { exact ⟨e, refl, refl_gen.single hde⟩ },
case refl_trans_gen.tail : f b hdf hfb ih
{ rcases ih with ⟨a, hea, hfa⟩,
cases hfa with _ hfa,
{ exact ⟨b, hea.tail hfb, refl_gen.refl⟩ },
{ rcases h _ _ _ hfb hfa with ⟨c, hbc, hac⟩,
exact ⟨c, hea.trans hac, hbc⟩ } } },
rcases this with ⟨a, hea, hba⟩, cases hba with _ hba,
{ exact ⟨b, hea, hcb⟩ },
{ exact ⟨a, hea, hcb.tail hba⟩ } }
end
lemma join_of_single (h : reflexive r) (hab : r a b) : join r a b :=
⟨b, hab, h b⟩
lemma symmetric_join : symmetric (join r) :=
λ a b ⟨c, hac, hcb⟩, ⟨c, hcb, hac⟩
lemma reflexive_join (h : reflexive r) : reflexive (join r) :=
λ a, ⟨a, h a, h a⟩
lemma transitive_join (ht : transitive r) (h : ∀ a b c, r a b → r a c → join r b c) :
transitive (join r) :=
λ a b c ⟨x, hax, hbx⟩ ⟨y, hby, hcy⟩,
let ⟨z, hxz, hyz⟩ := h b x y hbx hby in
⟨z, ht hax hxz, ht hcy hyz⟩
lemma equivalence_join (hr : reflexive r) (ht : transitive r)
(h : ∀ a b c, r a b → r a c → join r b c) :
equivalence (join r) :=
⟨reflexive_join hr, symmetric_join, transitive_join ht h⟩
lemma equivalence_join_refl_trans_gen
(h : ∀ a b c, r a b → r a c → ∃ d, refl_gen r b d ∧ refl_trans_gen r c d) :
equivalence (join (refl_trans_gen r)) :=
equivalence_join reflexive_refl_trans_gen transitive_refl_trans_gen (λ a b c, church_rosser h)
lemma join_of_equivalence {r' : α → α → Prop} (hr : equivalence r)
(h : ∀ a b, r' a b → r a b) : join r' a b → r a b
| ⟨c, hac, hbc⟩ := hr.2.2 (h _ _ hac) (hr.2.1 $ h _ _ hbc)
lemma refl_trans_gen_of_transitive_reflexive {r' : α → α → Prop} (hr : reflexive r)
(ht : transitive r) (h : ∀ a b, r' a b → r a b) (h' : refl_trans_gen r' a b) :
r a b :=
begin
induction h' with b c hab hbc ih,
{ exact hr _ },
{ exact ht ih (h _ _ hbc) }
end
lemma refl_trans_gen_of_equivalence {r' : α → α → Prop} (hr : equivalence r) :
(∀ a b, r' a b → r a b) → refl_trans_gen r' a b → r a b :=
refl_trans_gen_of_transitive_reflexive hr.1 hr.2.2
end join
end relation
section eqv_gen
variables {r : α → α → Prop} {a b : α}
lemma equivalence.eqv_gen_iff (h : equivalence r) : eqv_gen r a b ↔ r a b :=
iff.intro
begin
intro h,
induction h,
case eqv_gen.rel { assumption },
case eqv_gen.refl { exact h.1 _ },
case eqv_gen.symm { apply h.2.1, assumption },
case eqv_gen.trans : a b c _ _ hab hbc { exact h.2.2 hab hbc }
end
(eqv_gen.rel a b)
lemma equivalence.eqv_gen_eq (h : equivalence r) : eqv_gen r = r :=
funext $ λ _, funext $ λ _, propext $ h.eqv_gen_iff
lemma eqv_gen.mono {r p : α → α → Prop}
(hrp : ∀ a b, r a b → p a b) (h : eqv_gen r a b) : eqv_gen p a b :=
begin
induction h,
case eqv_gen.rel : a b h { exact eqv_gen.rel _ _ (hrp _ _ h) },
case eqv_gen.refl : { exact eqv_gen.refl _ },
case eqv_gen.symm : a b h ih { exact eqv_gen.symm _ _ ih },
case eqv_gen.trans : a b c ih1 ih2 hab hbc { exact eqv_gen.trans _ _ _ hab hbc }
end
end eqv_gen
|