/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import tactic.basic import logic.relator /-! # Relation closures This file defines the reflexive, transitive, and reflexive transitive closures of relations. It also proves some basic results on definitions in core, such as `eqv_gen`. Note that this is about unbundled relations, that is terms of types of the form `α → β → Prop`. For the bundled version, see `rel`. ## Definitions * `relation.refl_gen`: Reflexive closure. `refl_gen r` relates everything `r` related, plus for all `a` it relates `a` with itself. So `refl_gen r a b ↔ r a b ∨ a = b`. * `relation.trans_gen`: Transitive closure. `trans_gen r` relates everything `r` related transitively. So `trans_gen r a b ↔ ∃ x₀ ... xₙ, r a x₀ ∧ r x₀ x₁ ∧ ... ∧ r xₙ b`. * `relation.refl_trans_gen`: Reflexive transitive closure. `refl_trans_gen r` relates everything `r` related transitively, plus for all `a` it relates `a` with itself. So `refl_trans_gen r a b ↔ (∃ x₀ ... xₙ, r a x₀ ∧ r x₀ x₁ ∧ ... ∧ r xₙ b) ∨ a = b`. It is the same as the reflexive closure of the transitive closure, or the transitive closure of the reflexive closure. In terms of rewriting systems, this means that `a` can be rewritten to `b` in a number of rewrites. * `relation.comp`: Relation composition. We provide notation `∘r`. For `r : α → β → Prop` and `s : β → γ → Prop`, `r ∘r s`relates `a : α` and `c : γ` iff there exists `b : β` that's related to both. * `relation.map`: Image of a relation under a pair of maps. For `r : α → β → Prop`, `f : α → γ`, `g : β → δ`, `map r f g` is the relation `γ → δ → Prop` relating `f a` and `g b` for all `a`, `b` related by `r`. * `relation.join`: Join of a relation. For `r : α → α → Prop`, `join r a b ↔ ∃ c, r a c ∧ r b c`. In terms of rewriting systems, this means that `a` and `b` can be rewritten to the same term. -/ open function variables {α β γ δ : Type*} section ne_imp variable {r : α → α → Prop} lemma is_refl.reflexive [is_refl α r] : reflexive r := λ x, is_refl.refl x /-- To show a reflexive relation `r : α → α → Prop` holds over `x y : α`, it suffices to show it holds when `x ≠ y`. -/ lemma reflexive.rel_of_ne_imp (h : reflexive r) {x y : α} (hr : x ≠ y → r x y) : r x y := begin by_cases hxy : x = y, { exact hxy ▸ h x }, { exact hr hxy } end /-- If a reflexive relation `r : α → α → Prop` holds over `x y : α`, then it holds whether or not `x ≠ y`. -/ lemma reflexive.ne_imp_iff (h : reflexive r) {x y : α} : (x ≠ y → r x y) ↔ r x y := ⟨h.rel_of_ne_imp, λ hr _, hr⟩ /-- If a reflexive relation `r : α → α → Prop` holds over `x y : α`, then it holds whether or not `x ≠ y`. Unlike `reflexive.ne_imp_iff`, this uses `[is_refl α r]`. -/ lemma reflexive_ne_imp_iff [is_refl α r] {x y : α} : (x ≠ y → r x y) ↔ r x y := is_refl.reflexive.ne_imp_iff protected lemma symmetric.iff (H : symmetric r) (x y : α) : r x y ↔ r y x := ⟨λ h, H h, λ h, H h⟩ lemma symmetric.flip_eq (h : symmetric r) : flip r = r := funext₂ $ λ _ _, propext $ h.iff _ _ lemma symmetric.swap_eq : symmetric r → swap r = r := symmetric.flip_eq lemma flip_eq_iff : flip r = r ↔ symmetric r := ⟨λ h x y, (congr_fun₂ h _ _).mp, symmetric.flip_eq⟩ lemma swap_eq_iff : swap r = r ↔ symmetric r := flip_eq_iff end ne_imp section comap variables {r : β → β → Prop} lemma reflexive.comap (h : reflexive r) (f : α → β) : reflexive (r on f) := λ a, h (f a) lemma symmetric.comap (h : symmetric r) (f : α → β) : symmetric (r on f) := λ a b hab, h hab lemma transitive.comap (h : transitive r) (f : α → β) : transitive (r on f) := λ a b c hab hbc, h hab hbc lemma equivalence.comap (h : equivalence r) (f : α → β) : equivalence (r on f) := ⟨h.1.comap f, h.2.1.comap f, h.2.2.comap f⟩ end comap namespace relation section comp variables {r : α → β → Prop} {p : β → γ → Prop} {q : γ → δ → Prop} /-- The composition of two relations, yielding a new relation. The result relates a term of `α` and a term of `γ` if there is an intermediate term of `β` related to both. -/ def comp (r : α → β → Prop) (p : β → γ → Prop) (a : α) (c : γ) : Prop := ∃ b, r a b ∧ p b c local infixr ` ∘r ` : 80 := relation.comp lemma comp_eq : r ∘r (=) = r := funext $ λ a, funext $ λ b, propext $ iff.intro (λ ⟨c, h, eq⟩, eq ▸ h) (λ h, ⟨b, h, rfl⟩) lemma eq_comp : (=) ∘r r = r := funext $ λ a, funext $ λ b, propext $ iff.intro (λ ⟨c, eq, h⟩, eq.symm ▸ h) (λ h, ⟨a, rfl, h⟩) lemma iff_comp {r : Prop → α → Prop} : (↔) ∘r r = r := have (↔) = (=), by funext a b; exact iff_eq_eq, by rw [this, eq_comp] lemma comp_iff {r : α → Prop → Prop} : r ∘r (↔) = r := have (↔) = (=), by funext a b; exact iff_eq_eq, by rw [this, comp_eq] lemma comp_assoc : (r ∘r p) ∘r q = r ∘r p ∘r q := begin funext a d, apply propext, split, exact λ ⟨c, ⟨b, hab, hbc⟩, hcd⟩, ⟨b, hab, c, hbc, hcd⟩, exact λ ⟨b, hab, c, hbc, hcd⟩, ⟨c, ⟨b, hab, hbc⟩, hcd⟩ end lemma flip_comp : flip (r ∘r p) = (flip p) ∘r (flip r) := begin funext c a, apply propext, split, exact λ ⟨b, hab, hbc⟩, ⟨b, hbc, hab⟩, exact λ ⟨b, hbc, hab⟩, ⟨b, hab, hbc⟩ end end comp /-- The map of a relation `r` through a pair of functions pushes the relation to the codomains of the functions. The resulting relation is defined by having pairs of terms related if they have preimages related by `r`. -/ protected def map (r : α → β → Prop) (f : α → γ) (g : β → δ) : γ → δ → Prop := λ c d, ∃ a b, r a b ∧ f a = c ∧ g b = d variables {r : α → α → Prop} {a b c d : α} /-- `refl_trans_gen r`: reflexive transitive closure of `r` -/ @[mk_iff relation.refl_trans_gen.cases_tail_iff] inductive refl_trans_gen (r : α → α → Prop) (a : α) : α → Prop | refl : refl_trans_gen a | tail {b c} : refl_trans_gen b → r b c → refl_trans_gen c attribute [refl] refl_trans_gen.refl /-- `refl_gen r`: reflexive closure of `r` -/ @[mk_iff] inductive refl_gen (r : α → α → Prop) (a : α) : α → Prop | refl : refl_gen a | single {b} : r a b → refl_gen b /-- `trans_gen r`: transitive closure of `r` -/ @[mk_iff] inductive trans_gen (r : α → α → Prop) (a : α) : α → Prop | single {b} : r a b → trans_gen b | tail {b c} : trans_gen b → r b c → trans_gen c attribute [refl] refl_gen.refl namespace refl_gen lemma to_refl_trans_gen : ∀ {a b}, refl_gen r a b → refl_trans_gen r a b | a _ refl := by refl | a b (single h) := refl_trans_gen.tail refl_trans_gen.refl h lemma mono {p : α → α → Prop} (hp : ∀ a b, r a b → p a b) : ∀ {a b}, refl_gen r a b → refl_gen p a b | a _ refl_gen.refl := by refl | a b (single h) := single (hp a b h) instance : is_refl α (refl_gen r) := ⟨@refl α r⟩ end refl_gen namespace refl_trans_gen @[trans] lemma trans (hab : refl_trans_gen r a b) (hbc : refl_trans_gen r b c) : refl_trans_gen r a c := begin induction hbc, case refl_trans_gen.refl { assumption }, case refl_trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd } end lemma single (hab : r a b) : refl_trans_gen r a b := refl.tail hab lemma head (hab : r a b) (hbc : refl_trans_gen r b c) : refl_trans_gen r a c := begin induction hbc, case refl_trans_gen.refl { exact refl.tail hab }, case refl_trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd } end lemma symmetric (h : symmetric r) : symmetric (refl_trans_gen r) := begin intros x y h, induction h with z w a b c, { refl }, { apply relation.refl_trans_gen.head (h b) c } end lemma cases_tail : refl_trans_gen r a b → b = a ∨ (∃ c, refl_trans_gen r a c ∧ r c b) := (cases_tail_iff r a b).1 @[elab_as_eliminator] lemma head_induction_on {P : ∀ (a:α), refl_trans_gen r a b → Prop} {a : α} (h : refl_trans_gen r a b) (refl : P b refl) (head : ∀ {a c} (h' : r a c) (h : refl_trans_gen r c b), P c h → P a (h.head h')) : P a h := begin induction h generalizing P, case refl_trans_gen.refl { exact refl }, case refl_trans_gen.tail : b c hab hbc ih { apply ih, show P b _, from head hbc _ refl, show ∀ a a', r a a' → refl_trans_gen r a' b → P a' _ → P a _, from λ a a' hab hbc, head hab _ } end @[elab_as_eliminator] lemma trans_induction_on {P : ∀ {a b : α}, refl_trans_gen r a b → Prop} {a b : α} (h : refl_trans_gen r a b) (ih₁ : ∀ a, @P a a refl) (ih₂ : ∀ {a b} (h : r a b), P (single h)) (ih₃ : ∀ {a b c} (h₁ : refl_trans_gen r a b) (h₂ : refl_trans_gen r b c), P h₁ → P h₂ → P (h₁.trans h₂)) : P h := begin induction h, case refl_trans_gen.refl { exact ih₁ a }, case refl_trans_gen.tail : b c hab hbc ih { exact ih₃ hab (single hbc) ih (ih₂ hbc) } end lemma cases_head (h : refl_trans_gen r a b) : a = b ∨ (∃ c, r a c ∧ refl_trans_gen r c b) := begin induction h using relation.refl_trans_gen.head_induction_on, { left, refl }, { right, existsi _, split; assumption } end lemma cases_head_iff : refl_trans_gen r a b ↔ a = b ∨ (∃ c, r a c ∧ refl_trans_gen r c b) := begin use cases_head, rintro (rfl | ⟨c, hac, hcb⟩), { refl }, { exact head hac hcb } end lemma total_of_right_unique (U : relator.right_unique r) (ab : refl_trans_gen r a b) (ac : refl_trans_gen r a c) : refl_trans_gen r b c ∨ refl_trans_gen r c b := begin induction ab with b d ab bd IH, { exact or.inl ac }, { rcases IH with IH | IH, { rcases cases_head IH with rfl | ⟨e, be, ec⟩, { exact or.inr (single bd) }, { cases U bd be, exact or.inl ec } }, { exact or.inr (IH.tail bd) } } end end refl_trans_gen namespace trans_gen lemma to_refl {a b} (h : trans_gen r a b) : refl_trans_gen r a b := begin induction h with b h b c _ bc ab, exact refl_trans_gen.single h, exact refl_trans_gen.tail ab bc end @[trans] lemma trans_left (hab : trans_gen r a b) (hbc : refl_trans_gen r b c) : trans_gen r a c := begin induction hbc, case refl_trans_gen.refl : { assumption }, case refl_trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd } end @[trans] lemma trans (hab : trans_gen r a b) (hbc : trans_gen r b c) : trans_gen r a c := trans_left hab hbc.to_refl lemma head' (hab : r a b) (hbc : refl_trans_gen r b c) : trans_gen r a c := trans_left (single hab) hbc lemma tail' (hab : refl_trans_gen r a b) (hbc : r b c) : trans_gen r a c := begin induction hab generalizing c, case refl_trans_gen.refl : c hac { exact single hac }, case refl_trans_gen.tail : d b hab hdb IH { exact tail (IH hdb) hbc } end lemma head (hab : r a b) (hbc : trans_gen r b c) : trans_gen r a c := head' hab hbc.to_refl @[elab_as_eliminator] lemma head_induction_on {P : ∀ (a:α), trans_gen r a b → Prop} {a : α} (h : trans_gen r a b) (base : ∀ {a} (h : r a b), P a (single h)) (ih : ∀ {a c} (h' : r a c) (h : trans_gen r c b), P c h → P a (h.head h')) : P a h := begin induction h generalizing P, case single : a h { exact base h }, case tail : b c hab hbc h_ih { apply h_ih, show ∀ a, r a b → P a _, from λ a h, ih h (single hbc) (base hbc), show ∀ a a', r a a' → trans_gen r a' b → P a' _ → P a _, from λ a a' hab hbc, ih hab _ } end @[elab_as_eliminator] lemma trans_induction_on {P : ∀ {a b : α}, trans_gen r a b → Prop} {a b : α} (h : trans_gen r a b) (base : ∀ {a b} (h : r a b), P (single h)) (ih : ∀ {a b c} (h₁ : trans_gen r a b) (h₂ : trans_gen r b c), P h₁ → P h₂ → P (h₁.trans h₂)) : P h := begin induction h, case single : a h { exact base h }, case tail : b c hab hbc h_ih { exact ih hab (single hbc) h_ih (base hbc) } end @[trans] lemma trans_right (hab : refl_trans_gen r a b) (hbc : trans_gen r b c) : trans_gen r a c := begin induction hbc, case trans_gen.single : c hbc { exact tail' hab hbc }, case trans_gen.tail : c d hbc hcd hac { exact hac.tail hcd } end lemma tail'_iff : trans_gen r a c ↔ ∃ b, refl_trans_gen r a b ∧ r b c := begin refine ⟨λ h, _, λ ⟨b, hab, hbc⟩, tail' hab hbc⟩, cases h with _ hac b _ hab hbc, { exact ⟨_, by refl, hac⟩ }, { exact ⟨_, hab.to_refl, hbc⟩ } end lemma head'_iff : trans_gen r a c ↔ ∃ b, r a b ∧ refl_trans_gen r b c := begin refine ⟨λ h, _, λ ⟨b, hab, hbc⟩, head' hab hbc⟩, induction h, case trans_gen.single : c hac { exact ⟨_, hac, by refl⟩ }, case trans_gen.tail : b c hab hbc IH { rcases IH with ⟨d, had, hdb⟩, exact ⟨_, had, hdb.tail hbc⟩ } end end trans_gen lemma _root_.acc.trans_gen {α} {r : α → α → Prop} {a : α} (h : acc r a) : acc (trans_gen r) a := begin induction h with x _ H, refine acc.intro x (λ y hy, _), cases hy with _ hyx z _ hyz hzx, exacts [H y hyx, (H z hzx).inv hyz], end lemma _root_.well_founded.trans_gen {α} {r : α → α → Prop} (h : well_founded r) : well_founded (trans_gen r) := ⟨λ a, (h.apply a).trans_gen⟩ section trans_gen lemma trans_gen_eq_self (trans : transitive r) : trans_gen r = r := funext $ λ a, funext $ λ b, propext $ ⟨λ h, begin induction h, case trans_gen.single : c hc { exact hc }, case trans_gen.tail : c d hac hcd hac { exact trans hac hcd } end, trans_gen.single⟩ lemma transitive_trans_gen : transitive (trans_gen r) := λ a b c, trans_gen.trans instance : is_trans α (trans_gen r) := ⟨@trans_gen.trans α r⟩ lemma trans_gen_idem : trans_gen (trans_gen r) = trans_gen r := trans_gen_eq_self transitive_trans_gen lemma trans_gen.lift {p : β → β → Prop} {a b : α} (f : α → β) (h : ∀ a b, r a b → p (f a) (f b)) (hab : trans_gen r a b) : trans_gen p (f a) (f b) := begin induction hab, case trans_gen.single : c hac { exact trans_gen.single (h a c hac) }, case trans_gen.tail : c d hac hcd hac { exact trans_gen.tail hac (h c d hcd) } end lemma trans_gen.lift' {p : β → β → Prop} {a b : α} (f : α → β) (h : ∀ a b, r a b → trans_gen p (f a) (f b)) (hab : trans_gen r a b) : trans_gen p (f a) (f b) := by simpa [trans_gen_idem] using hab.lift f h lemma trans_gen.closed {p : α → α → Prop} : (∀ a b, r a b → trans_gen p a b) → trans_gen r a b → trans_gen p a b := trans_gen.lift' id lemma trans_gen.mono {p : α → α → Prop} : (∀ a b, r a b → p a b) → trans_gen r a b → trans_gen p a b := trans_gen.lift id lemma trans_gen.swap (h : trans_gen r b a) : trans_gen (swap r) a b := by { induction h with b h b c hab hbc ih, { exact trans_gen.single h }, exact ih.head hbc } lemma trans_gen_swap : trans_gen (swap r) a b ↔ trans_gen r b a := ⟨trans_gen.swap, trans_gen.swap⟩ end trans_gen section refl_trans_gen open refl_trans_gen lemma refl_trans_gen_iff_eq (h : ∀ b, ¬ r a b) : refl_trans_gen r a b ↔ b = a := by rw [cases_head_iff]; simp [h, eq_comm] lemma refl_trans_gen_iff_eq_or_trans_gen : refl_trans_gen r a b ↔ b = a ∨ trans_gen r a b := begin refine ⟨λ h, _, λ h, _⟩, { cases h with c _ hac hcb, { exact or.inl rfl }, { exact or.inr (trans_gen.tail' hac hcb) } }, { rcases h with rfl | h, {refl}, {exact h.to_refl} } end lemma refl_trans_gen.lift {p : β → β → Prop} {a b : α} (f : α → β) (h : ∀ a b, r a b → p (f a) (f b)) (hab : refl_trans_gen r a b) : refl_trans_gen p (f a) (f b) := refl_trans_gen.trans_induction_on hab (λ a, refl) (λ a b, refl_trans_gen.single ∘ h _ _) (λ a b c _ _, trans) lemma refl_trans_gen.mono {p : α → α → Prop} : (∀ a b, r a b → p a b) → refl_trans_gen r a b → refl_trans_gen p a b := refl_trans_gen.lift id lemma refl_trans_gen_eq_self (refl : reflexive r) (trans : transitive r) : refl_trans_gen r = r := funext $ λ a, funext $ λ b, propext $ ⟨λ h, begin induction h with b c h₁ h₂ IH, {apply refl}, exact trans IH h₂, end, single⟩ lemma reflexive_refl_trans_gen : reflexive (refl_trans_gen r) := λ a, refl lemma transitive_refl_trans_gen : transitive (refl_trans_gen r) := λ a b c, trans instance : is_refl α (refl_trans_gen r) := ⟨@refl_trans_gen.refl α r⟩ instance : is_trans α (refl_trans_gen r) := ⟨@refl_trans_gen.trans α r⟩ lemma refl_trans_gen_idem : refl_trans_gen (refl_trans_gen r) = refl_trans_gen r := refl_trans_gen_eq_self reflexive_refl_trans_gen transitive_refl_trans_gen lemma refl_trans_gen.lift' {p : β → β → Prop} {a b : α} (f : α → β) (h : ∀ a b, r a b → refl_trans_gen p (f a) (f b)) (hab : refl_trans_gen r a b) : refl_trans_gen p (f a) (f b) := by simpa [refl_trans_gen_idem] using hab.lift f h lemma refl_trans_gen_closed {p : α → α → Prop} : (∀ a b, r a b → refl_trans_gen p a b) → refl_trans_gen r a b → refl_trans_gen p a b := refl_trans_gen.lift' id lemma refl_trans_gen.swap (h : refl_trans_gen r b a) : refl_trans_gen (swap r) a b := by { induction h with b c hab hbc ih, { refl }, exact ih.head hbc } lemma refl_trans_gen_swap : refl_trans_gen (swap r) a b ↔ refl_trans_gen r b a := ⟨refl_trans_gen.swap, refl_trans_gen.swap⟩ end refl_trans_gen /-- The join of a relation on a single type is a new relation for which pairs of terms are related if there is a third term they are both related to. For example, if `r` is a relation representing rewrites in a term rewriting system, then *confluence* is the property that if `a` rewrites to both `b` and `c`, then `join r` relates `b` and `c` (see `relation.church_rosser`). -/ def join (r : α → α → Prop) : α → α → Prop := λ a b, ∃ c, r a c ∧ r b c section join open refl_trans_gen refl_gen /-- A sufficient condition for the Church-Rosser property. -/ lemma church_rosser (h : ∀ a b c, r a b → r a c → ∃ d, refl_gen r b d ∧ refl_trans_gen r c d) (hab : refl_trans_gen r a b) (hac : refl_trans_gen r a c) : join (refl_trans_gen r) b c := begin induction hab, case refl_trans_gen.refl { exact ⟨c, hac, refl⟩ }, case refl_trans_gen.tail : d e had hde ih { clear hac had a, rcases ih with ⟨b, hdb, hcb⟩, have : ∃ a, refl_trans_gen r e a ∧ refl_gen r b a, { clear hcb, induction hdb, case refl_trans_gen.refl { exact ⟨e, refl, refl_gen.single hde⟩ }, case refl_trans_gen.tail : f b hdf hfb ih { rcases ih with ⟨a, hea, hfa⟩, cases hfa with _ hfa, { exact ⟨b, hea.tail hfb, refl_gen.refl⟩ }, { rcases h _ _ _ hfb hfa with ⟨c, hbc, hac⟩, exact ⟨c, hea.trans hac, hbc⟩ } } }, rcases this with ⟨a, hea, hba⟩, cases hba with _ hba, { exact ⟨b, hea, hcb⟩ }, { exact ⟨a, hea, hcb.tail hba⟩ } } end lemma join_of_single (h : reflexive r) (hab : r a b) : join r a b := ⟨b, hab, h b⟩ lemma symmetric_join : symmetric (join r) := λ a b ⟨c, hac, hcb⟩, ⟨c, hcb, hac⟩ lemma reflexive_join (h : reflexive r) : reflexive (join r) := λ a, ⟨a, h a, h a⟩ lemma transitive_join (ht : transitive r) (h : ∀ a b c, r a b → r a c → join r b c) : transitive (join r) := λ a b c ⟨x, hax, hbx⟩ ⟨y, hby, hcy⟩, let ⟨z, hxz, hyz⟩ := h b x y hbx hby in ⟨z, ht hax hxz, ht hcy hyz⟩ lemma equivalence_join (hr : reflexive r) (ht : transitive r) (h : ∀ a b c, r a b → r a c → join r b c) : equivalence (join r) := ⟨reflexive_join hr, symmetric_join, transitive_join ht h⟩ lemma equivalence_join_refl_trans_gen (h : ∀ a b c, r a b → r a c → ∃ d, refl_gen r b d ∧ refl_trans_gen r c d) : equivalence (join (refl_trans_gen r)) := equivalence_join reflexive_refl_trans_gen transitive_refl_trans_gen (λ a b c, church_rosser h) lemma join_of_equivalence {r' : α → α → Prop} (hr : equivalence r) (h : ∀ a b, r' a b → r a b) : join r' a b → r a b | ⟨c, hac, hbc⟩ := hr.2.2 (h _ _ hac) (hr.2.1 $ h _ _ hbc) lemma refl_trans_gen_of_transitive_reflexive {r' : α → α → Prop} (hr : reflexive r) (ht : transitive r) (h : ∀ a b, r' a b → r a b) (h' : refl_trans_gen r' a b) : r a b := begin induction h' with b c hab hbc ih, { exact hr _ }, { exact ht ih (h _ _ hbc) } end lemma refl_trans_gen_of_equivalence {r' : α → α → Prop} (hr : equivalence r) : (∀ a b, r' a b → r a b) → refl_trans_gen r' a b → r a b := refl_trans_gen_of_transitive_reflexive hr.1 hr.2.2 end join end relation section eqv_gen variables {r : α → α → Prop} {a b : α} lemma equivalence.eqv_gen_iff (h : equivalence r) : eqv_gen r a b ↔ r a b := iff.intro begin intro h, induction h, case eqv_gen.rel { assumption }, case eqv_gen.refl { exact h.1 _ }, case eqv_gen.symm { apply h.2.1, assumption }, case eqv_gen.trans : a b c _ _ hab hbc { exact h.2.2 hab hbc } end (eqv_gen.rel a b) lemma equivalence.eqv_gen_eq (h : equivalence r) : eqv_gen r = r := funext $ λ _, funext $ λ _, propext $ h.eqv_gen_iff lemma eqv_gen.mono {r p : α → α → Prop} (hrp : ∀ a b, r a b → p a b) (h : eqv_gen r a b) : eqv_gen p a b := begin induction h, case eqv_gen.rel : a b h { exact eqv_gen.rel _ _ (hrp _ _ h) }, case eqv_gen.refl : { exact eqv_gen.refl _ }, case eqv_gen.symm : a b h ih { exact eqv_gen.symm _ _ ih }, case eqv_gen.trans : a b c ih1 ih2 hab hbc { exact eqv_gen.trans _ _ _ hab hbc } end end eqv_gen