Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
12.5 kB
/-
Copyright (c) 2021 Yakov Pechersky. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yakov Pechersky
-/
import linear_algebra.matrix.nonsingular_inverse
/-!
# Integer powers of square matrices
In this file, we define integer power of matrices, relying on
the nonsingular inverse definition for negative powers.
## Implementation details
The main definition is a direct recursive call on the integer inductive type,
as provided by the `div_inv_monoid.zpow` default implementation.
The lemma names are taken from `algebra.group_with_zero.power`.
## Tags
matrix inverse, matrix powers
-/
open_locale matrix
namespace matrix
variables {n' : Type*} [decidable_eq n'] [fintype n'] {R : Type*} [comm_ring R]
local notation `M` := matrix n' n' R
noncomputable instance : div_inv_monoid M :=
{ ..(show monoid M, by apply_instance),
..(show has_inv M, by apply_instance) }
section nat_pow
@[simp] theorem inv_pow' (A : M) (n : ℕ) : (A⁻¹) ^ n = (A ^ n)⁻¹ :=
begin
induction n with n ih,
{ simp },
{ rw [pow_succ A, mul_eq_mul, mul_inv_rev, ← ih, ← mul_eq_mul, ← pow_succ'] }
end
theorem pow_sub' (A : M) {m n : ℕ} (ha : is_unit A.det) (h : n ≤ m) :
A ^ (m - n) = A ^ m ⬝ (A ^ n)⁻¹ :=
begin
rw [←tsub_add_cancel_of_le h, pow_add, mul_eq_mul, matrix.mul_assoc, mul_nonsing_inv,
tsub_add_cancel_of_le h, matrix.mul_one],
simpa using ha.pow n
end
theorem pow_inv_comm' (A : M) (m n : ℕ) : (A⁻¹) ^ m ⬝ A ^ n = A ^ n ⬝ (A⁻¹) ^ m :=
begin
induction n with n IH generalizing m,
{ simp },
cases m,
{ simp },
rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h,
{ calc A⁻¹ ^ (m + 1) ⬝ A ^ (n + 1)
= A⁻¹ ^ m ⬝ (A⁻¹ ⬝ A) ⬝ A ^ n :
by simp only [pow_succ' A⁻¹, pow_succ A, mul_eq_mul, matrix.mul_assoc]
... = A ^ n ⬝ A⁻¹ ^ m :
by simp only [h, matrix.mul_one, matrix.one_mul, IH m]
... = A ^ n ⬝ (A ⬝ A⁻¹) ⬝ A⁻¹ ^ m :
by simp only [h', matrix.mul_one, matrix.one_mul]
... = A ^ (n + 1) ⬝ A⁻¹ ^ (m + 1) :
by simp only [pow_succ' A, pow_succ A⁻¹, mul_eq_mul, matrix.mul_assoc] },
{ simp [h] }
end
end nat_pow
section zpow
open int
@[simp] theorem one_zpow : ∀ (n : ℤ), (1 : M) ^ n = 1
| (n : ℕ) := by rw [zpow_coe_nat, one_pow]
| -[1+ n] := by rw [zpow_neg_succ_of_nat, one_pow, inv_one]
lemma zero_zpow : ∀ z : ℤ, z0 → (0 : M) ^ z = 0
| (n : ℕ) h := by { rw [zpow_coe_nat, zero_pow], refine lt_of_le_of_ne n.zero_le (ne.symm _),
simpa using h }
| -[1+n] h := by simp [zero_pow n.zero_lt_succ]
lemma zero_zpow_eq (n : ℤ) : (0 : M) ^ n = if n = 0 then 1 else 0 :=
begin
split_ifs with h,
{ rw [h, zpow_zero] },
{ rw [zero_zpow _ h] }
end
theorem inv_zpow (A : M) : ∀n:ℤ, A⁻¹ ^ n = (A ^ n)⁻¹
| (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, inv_pow']
| -[1+ n] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, inv_pow']
@[simp] lemma zpow_neg_one (A : M) : A ^ (-1 : ℤ) = A⁻¹ :=
begin
convert div_inv_monoid.zpow_neg' 0 A,
simp only [zpow_one, int.coe_nat_zero, int.coe_nat_succ, zpow_eq_pow, zero_add]
end
theorem zpow_coe_nat (A : M) (n : ℕ) : A ^ (n : ℤ) = (A ^ n) :=
zpow_coe_nat _ _
@[simp] theorem zpow_neg_coe_nat (A : M) (n : ℕ) : A ^ (-n : ℤ) = (A ^ n)⁻¹ :=
begin
cases n,
{ simp },
{ exact div_inv_monoid.zpow_neg' _ _ }
end
lemma _root_.is_unit.det_zpow {A : M} (h : is_unit A.det) (n : ℤ) : is_unit (A ^ n).det :=
begin
cases n,
{ simpa using h.pow n },
{ simpa using h.pow n.succ }
end
lemma is_unit_det_zpow_iff {A : M} {z : ℤ} :
is_unit (A ^ z).det ↔ is_unit A.det ∨ z = 0 :=
begin
induction z using int.induction_on with z IH z IH,
{ simp },
{ rw [←int.coe_nat_succ, zpow_coe_nat, det_pow, is_unit_pos_pow_iff (z.zero_lt_succ),
←int.coe_nat_zero, int.coe_nat_eq_coe_nat_iff],
simp },
{ rw [←neg_add', ←int.coe_nat_succ, zpow_neg_coe_nat, is_unit_nonsing_inv_det_iff,
det_pow, is_unit_pos_pow_iff (z.zero_lt_succ), neg_eq_zero, ←int.coe_nat_zero,
int.coe_nat_eq_coe_nat_iff],
simp }
end
theorem zpow_neg {A : M} (h : is_unit A.det) : ∀ (n : ℤ), A ^ -n = (A ^ n)⁻¹
| (n : ℕ) := zpow_neg_coe_nat _ _
| -[1+ n] := by { rw [zpow_neg_succ_of_nat, neg_neg_of_nat_succ, of_nat_eq_coe, zpow_coe_nat,
nonsing_inv_nonsing_inv],
rw det_pow,
exact h.pow _ }
lemma inv_zpow' {A : M} (h : is_unit A.det) (n : ℤ) :
(A ⁻¹) ^ n = A ^ (-n) :=
by rw [zpow_neg h, inv_zpow]
lemma zpow_add_one {A : M} (h : is_unit A.det) : ∀ n : ℤ, A ^ (n + 1) = A ^ n * A
| (n : ℕ) := by simp only [← nat.cast_succ, pow_succ', zpow_coe_nat]
| -((n : ℕ) + 1) :=
calc A ^ (-(n + 1) + 1 : ℤ)
= (A ^ n)⁻¹ : by rw [neg_add, neg_add_cancel_right, zpow_neg h, zpow_coe_nat]
... = (A ⬝ A ^ n)⁻¹ ⬝ A : by rw [mul_inv_rev, matrix.mul_assoc, nonsing_inv_mul _ h, matrix.mul_one]
... = A ^ -(n + 1 : ℤ) * A :
by rw [zpow_neg h, ← int.coe_nat_succ, zpow_coe_nat, pow_succ, mul_eq_mul, mul_eq_mul]
lemma zpow_sub_one {A : M} (h : is_unit A.det) (n : ℤ) : A ^ (n - 1) = A ^ n * A⁻¹ :=
calc A ^ (n - 1) = A ^ (n - 1) * A * A⁻¹ : by rw [mul_assoc, mul_eq_mul A, mul_nonsing_inv _ h,
mul_one]
... = A^n * A⁻¹ : by rw [← zpow_add_one h, sub_add_cancel]
lemma zpow_add {A : M} (ha : is_unit A.det) (m n : ℤ) : A ^ (m + n) = A ^ m * A ^ n :=
begin
induction n using int.induction_on with n ihn n ihn,
case hz : { simp },
{ simp only [← add_assoc, zpow_add_one ha, ihn, mul_assoc] },
{ rw [zpow_sub_one ha, ← mul_assoc, ← ihn, ← zpow_sub_one ha, add_sub_assoc] }
end
lemma zpow_add_of_nonpos {A : M} {m n : ℤ} (hm : m0) (hn : n0) :
A ^ (m + n) = A ^ m * A ^ n :=
begin
rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h,
{ exact zpow_add (is_unit_det_of_left_inverse h) m n },
{ obtain ⟨k, rfl⟩ := exists_eq_neg_of_nat hm,
obtain ⟨l, rfl⟩ := exists_eq_neg_of_nat hn,
simp_rw [←neg_add, ←int.coe_nat_add, zpow_neg_coe_nat, ←inv_pow', h, pow_add] }
end
lemma zpow_add_of_nonneg {A : M} {m n : ℤ} (hm : 0 ≤ m) (hn : 0 ≤ n) :
A ^ (m + n) = A ^ m * A ^ n :=
begin
obtain ⟨k, rfl⟩ := eq_coe_of_zero_le hm,
obtain ⟨l, rfl⟩ := eq_coe_of_zero_le hn,
rw [←int.coe_nat_add, zpow_coe_nat, zpow_coe_nat, zpow_coe_nat, pow_add],
end
theorem zpow_one_add {A : M} (h : is_unit A.det) (i : ℤ) : A ^ (1 + i) = A * A ^ i :=
by rw [zpow_add h, zpow_one]
theorem semiconj_by.zpow_right {A X Y : M} (hx : is_unit X.det) (hy : is_unit Y.det)
(h : semiconj_by A X Y) :
m : ℤ, semiconj_by A (X^m) (Y^m)
| (n : ℕ) := by simp [h.pow_right n]
| -[1+n] := begin
have hx' : is_unit (X ^ n.succ).det,
{ rw det_pow,
exact hx.pow n.succ },
have hy' : is_unit (Y ^ n.succ).det,
{ rw det_pow,
exact hy.pow n.succ },
rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, nonsing_inv_apply _ hx', nonsing_inv_apply _ hy',
semiconj_by],
refine (is_regular_of_is_left_regular_det hy'.is_regular.left).left _,
rw [←mul_assoc, ←(h.pow_right n.succ).eq, mul_assoc, mul_eq_mul (X ^ _), mul_smul, mul_adjugate,
mul_eq_mul, mul_eq_mul, mul_eq_mul, ←matrix.mul_assoc, mul_smul (Y ^ _) (↑(hy'.unit)⁻¹ : R),
mul_adjugate, smul_smul, smul_smul, hx'.coe_inv_mul,
hy'.coe_inv_mul, one_smul, matrix.mul_one, matrix.one_mul],
end
theorem commute.zpow_right {A B : M} (h : commute A B) (m : ℤ) : commute A (B^m) :=
begin
rcases nonsing_inv_cancel_or_zero B with ⟨hB, hB'⟩ | hB,
{ refine semiconj_by.zpow_right _ _ h _;
exact is_unit_det_of_left_inverse hB },
{ cases m,
{ simpa using h.pow_right _ },
{ simp [←inv_pow', hB] } }
end
theorem commute.zpow_left {A B : M} (h : commute A B) (m : ℤ) : commute (A^m) B :=
(commute.zpow_right h.symm m).symm
theorem commute.zpow_zpow {A B : M} (h : commute A B) (m n : ℤ) : commute (A^m) (B^n) :=
commute.zpow_right (commute.zpow_left h _) _
theorem commute.zpow_self (A : M) (n : ℤ) : commute (A^n) A :=
commute.zpow_left (commute.refl A) _
theorem commute.self_zpow (A : M) (n : ℤ) : commute A (A^n) :=
commute.zpow_right (commute.refl A) _
theorem commute.zpow_zpow_self (A : M) (m n : ℤ) : commute (A^m) (A^n) :=
commute.zpow_zpow (commute.refl A) _ _
theorem zpow_bit0 (A : M) (n : ℤ) : A ^ bit0 n = A ^ n * A ^ n :=
begin
cases le_total 0 n with nonneg nonpos,
{ exact zpow_add_of_nonneg nonneg nonneg },
{ exact zpow_add_of_nonpos nonpos nonpos }
end
lemma zpow_add_one_of_ne_neg_one {A : M} : ∀ (n : ℤ), n ≠ -1 → A ^ (n + 1) = A ^ n * A
| (n : ℕ) _ := by simp only [pow_succ', ← nat.cast_succ, zpow_coe_nat]
| (-1) h := absurd rfl h
| (-((n : ℕ) + 2)) _ := begin
rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h,
{ apply zpow_add_one (is_unit_det_of_left_inverse h) },
{ show A ^ (-((n + 1 : ℕ) : ℤ)) = A ^ -((n + 2 : ℕ) : ℤ) * A,
simp_rw [zpow_neg_coe_nat, ←inv_pow', h, zero_pow nat.succ_pos', zero_mul] }
end
theorem zpow_bit1 (A : M) (n : ℤ) : A ^ bit1 n = A ^ n * A ^ n * A :=
begin
rw [bit1, zpow_add_one_of_ne_neg_one, zpow_bit0],
intro h,
simpa using congr_arg bodd h
end
theorem zpow_mul (A : M) (h : is_unit A.det) : ∀ m n : ℤ, A ^ (m * n) = (A ^ m) ^ n
| (m : ℕ) (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, ← pow_mul, ← zpow_coe_nat, int.coe_nat_mul]
| (m : ℕ) -[1+ n] := by rw [zpow_coe_nat, zpow_neg_succ_of_nat, ← pow_mul, coe_nat_mul_neg_succ,
←int.coe_nat_mul, zpow_neg_coe_nat]
| -[1+ m] (n : ℕ) := by rw [zpow_coe_nat, zpow_neg_succ_of_nat, ← inv_pow', ← pow_mul,
neg_succ_mul_coe_nat, ←int.coe_nat_mul, zpow_neg_coe_nat, inv_pow']
| -[1+ m] -[1+ n] := by { rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, neg_succ_mul_neg_succ,
←int.coe_nat_mul, zpow_coe_nat, inv_pow', ←pow_mul, nonsing_inv_nonsing_inv],
rw det_pow,
exact h.pow _ }
theorem zpow_mul' (A : M) (h : is_unit A.det) (m n : ℤ) : A ^ (m * n) = (A ^ n) ^ m :=
by rw [mul_comm, zpow_mul _ h]
@[simp, norm_cast] lemma coe_units_zpow (u : Mˣ) :
∀ (n : ℤ), ((u ^ n : Mˣ) : M) = u ^ n
| (n : ℕ) := by rw [_root_.zpow_coe_nat, zpow_coe_nat, units.coe_pow]
| -[1+k] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, ←inv_pow, u⁻¹.coe_pow, ←inv_pow',
coe_units_inv]
lemma zpow_ne_zero_of_is_unit_det [nonempty n'] [nontrivial R] {A : M}
(ha : is_unit A.det) (z : ℤ) : A ^ z ≠ 0 :=
begin
have := ha.det_zpow z,
contrapose! this,
rw [this, det_zero ‹_›],
exact not_is_unit_zero
end
lemma zpow_sub {A : M} (ha : is_unit A.det) (z1 z2 : ℤ) : A ^ (z1 - z2) = A ^ z1 / A ^ z2 :=
by rw [sub_eq_add_neg, zpow_add ha, zpow_neg ha, div_eq_mul_inv]
lemma commute.mul_zpow {A B : M} (h : commute A B) :
∀ (i : ℤ), (A * B) ^ i = (A ^ i) * (B ^ i)
| (n : ℕ) := by simp [h.mul_pow n, -mul_eq_mul]
| -[1+n] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, zpow_neg_succ_of_nat,
mul_eq_mul (_⁻¹), ←mul_inv_rev, ←mul_eq_mul, h.mul_pow n.succ,
(h.pow_pow _ _).eq]
theorem zpow_bit0' (A : M) (n : ℤ) : A ^ bit0 n = (A * A) ^ n :=
(zpow_bit0 A n).trans (commute.mul_zpow (commute.refl A) n).symm
theorem zpow_bit1' (A : M) (n : ℤ) : A ^ bit1 n = (A * A) ^ n * A :=
by rw [zpow_bit1, commute.mul_zpow (commute.refl A)]
theorem zpow_neg_mul_zpow_self (n : ℤ) {A : M} (h : is_unit A.det) :
A ^ (-n) * A ^ n = 1 :=
by rw [zpow_neg h, mul_eq_mul, nonsing_inv_mul _ (h.det_zpow _)]
theorem one_div_pow {A : M} (n : ℕ) :
(1 / A) ^ n = 1 / A ^ n :=
by simp only [one_div, inv_pow']
theorem one_div_zpow {A : M} (n : ℤ) :
(1 / A) ^ n = 1 / A ^ n :=
by simp only [one_div, inv_zpow]
@[simp] theorem transpose_zpow (A : M) : ∀ (n : ℤ), (A ^ n)ᵀ = Aᵀ ^ n
| (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, transpose_pow]
| -[1+ n] := by
rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, transpose_nonsing_inv, transpose_pow]
@[simp] theorem conj_transpose_zpow [star_ring R] (A : M) : ∀ (n : ℤ), (A ^ n)ᴴ = Aᴴ ^ n
| (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, conj_transpose_pow]
| -[1+ n] := by
rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, conj_transpose_nonsing_inv, conj_transpose_pow]
end zpow
end matrix