/- Copyright (c) 2021 Yakov Pechersky. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yakov Pechersky -/ import linear_algebra.matrix.nonsingular_inverse /-! # Integer powers of square matrices In this file, we define integer power of matrices, relying on the nonsingular inverse definition for negative powers. ## Implementation details The main definition is a direct recursive call on the integer inductive type, as provided by the `div_inv_monoid.zpow` default implementation. The lemma names are taken from `algebra.group_with_zero.power`. ## Tags matrix inverse, matrix powers -/ open_locale matrix namespace matrix variables {n' : Type*} [decidable_eq n'] [fintype n'] {R : Type*} [comm_ring R] local notation `M` := matrix n' n' R noncomputable instance : div_inv_monoid M := { ..(show monoid M, by apply_instance), ..(show has_inv M, by apply_instance) } section nat_pow @[simp] theorem inv_pow' (A : M) (n : ℕ) : (A⁻¹) ^ n = (A ^ n)⁻¹ := begin induction n with n ih, { simp }, { rw [pow_succ A, mul_eq_mul, mul_inv_rev, ← ih, ← mul_eq_mul, ← pow_succ'] } end theorem pow_sub' (A : M) {m n : ℕ} (ha : is_unit A.det) (h : n ≤ m) : A ^ (m - n) = A ^ m ⬝ (A ^ n)⁻¹ := begin rw [←tsub_add_cancel_of_le h, pow_add, mul_eq_mul, matrix.mul_assoc, mul_nonsing_inv, tsub_add_cancel_of_le h, matrix.mul_one], simpa using ha.pow n end theorem pow_inv_comm' (A : M) (m n : ℕ) : (A⁻¹) ^ m ⬝ A ^ n = A ^ n ⬝ (A⁻¹) ^ m := begin induction n with n IH generalizing m, { simp }, cases m, { simp }, rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h, { calc A⁻¹ ^ (m + 1) ⬝ A ^ (n + 1) = A⁻¹ ^ m ⬝ (A⁻¹ ⬝ A) ⬝ A ^ n : by simp only [pow_succ' A⁻¹, pow_succ A, mul_eq_mul, matrix.mul_assoc] ... = A ^ n ⬝ A⁻¹ ^ m : by simp only [h, matrix.mul_one, matrix.one_mul, IH m] ... = A ^ n ⬝ (A ⬝ A⁻¹) ⬝ A⁻¹ ^ m : by simp only [h', matrix.mul_one, matrix.one_mul] ... = A ^ (n + 1) ⬝ A⁻¹ ^ (m + 1) : by simp only [pow_succ' A, pow_succ A⁻¹, mul_eq_mul, matrix.mul_assoc] }, { simp [h] } end end nat_pow section zpow open int @[simp] theorem one_zpow : ∀ (n : ℤ), (1 : M) ^ n = 1 | (n : ℕ) := by rw [zpow_coe_nat, one_pow] | -[1+ n] := by rw [zpow_neg_succ_of_nat, one_pow, inv_one] lemma zero_zpow : ∀ z : ℤ, z ≠ 0 → (0 : M) ^ z = 0 | (n : ℕ) h := by { rw [zpow_coe_nat, zero_pow], refine lt_of_le_of_ne n.zero_le (ne.symm _), simpa using h } | -[1+n] h := by simp [zero_pow n.zero_lt_succ] lemma zero_zpow_eq (n : ℤ) : (0 : M) ^ n = if n = 0 then 1 else 0 := begin split_ifs with h, { rw [h, zpow_zero] }, { rw [zero_zpow _ h] } end theorem inv_zpow (A : M) : ∀n:ℤ, A⁻¹ ^ n = (A ^ n)⁻¹ | (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, inv_pow'] | -[1+ n] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, inv_pow'] @[simp] lemma zpow_neg_one (A : M) : A ^ (-1 : ℤ) = A⁻¹ := begin convert div_inv_monoid.zpow_neg' 0 A, simp only [zpow_one, int.coe_nat_zero, int.coe_nat_succ, zpow_eq_pow, zero_add] end theorem zpow_coe_nat (A : M) (n : ℕ) : A ^ (n : ℤ) = (A ^ n) := zpow_coe_nat _ _ @[simp] theorem zpow_neg_coe_nat (A : M) (n : ℕ) : A ^ (-n : ℤ) = (A ^ n)⁻¹ := begin cases n, { simp }, { exact div_inv_monoid.zpow_neg' _ _ } end lemma _root_.is_unit.det_zpow {A : M} (h : is_unit A.det) (n : ℤ) : is_unit (A ^ n).det := begin cases n, { simpa using h.pow n }, { simpa using h.pow n.succ } end lemma is_unit_det_zpow_iff {A : M} {z : ℤ} : is_unit (A ^ z).det ↔ is_unit A.det ∨ z = 0 := begin induction z using int.induction_on with z IH z IH, { simp }, { rw [←int.coe_nat_succ, zpow_coe_nat, det_pow, is_unit_pos_pow_iff (z.zero_lt_succ), ←int.coe_nat_zero, int.coe_nat_eq_coe_nat_iff], simp }, { rw [←neg_add', ←int.coe_nat_succ, zpow_neg_coe_nat, is_unit_nonsing_inv_det_iff, det_pow, is_unit_pos_pow_iff (z.zero_lt_succ), neg_eq_zero, ←int.coe_nat_zero, int.coe_nat_eq_coe_nat_iff], simp } end theorem zpow_neg {A : M} (h : is_unit A.det) : ∀ (n : ℤ), A ^ -n = (A ^ n)⁻¹ | (n : ℕ) := zpow_neg_coe_nat _ _ | -[1+ n] := by { rw [zpow_neg_succ_of_nat, neg_neg_of_nat_succ, of_nat_eq_coe, zpow_coe_nat, nonsing_inv_nonsing_inv], rw det_pow, exact h.pow _ } lemma inv_zpow' {A : M} (h : is_unit A.det) (n : ℤ) : (A ⁻¹) ^ n = A ^ (-n) := by rw [zpow_neg h, inv_zpow] lemma zpow_add_one {A : M} (h : is_unit A.det) : ∀ n : ℤ, A ^ (n + 1) = A ^ n * A | (n : ℕ) := by simp only [← nat.cast_succ, pow_succ', zpow_coe_nat] | -((n : ℕ) + 1) := calc A ^ (-(n + 1) + 1 : ℤ) = (A ^ n)⁻¹ : by rw [neg_add, neg_add_cancel_right, zpow_neg h, zpow_coe_nat] ... = (A ⬝ A ^ n)⁻¹ ⬝ A : by rw [mul_inv_rev, matrix.mul_assoc, nonsing_inv_mul _ h, matrix.mul_one] ... = A ^ -(n + 1 : ℤ) * A : by rw [zpow_neg h, ← int.coe_nat_succ, zpow_coe_nat, pow_succ, mul_eq_mul, mul_eq_mul] lemma zpow_sub_one {A : M} (h : is_unit A.det) (n : ℤ) : A ^ (n - 1) = A ^ n * A⁻¹ := calc A ^ (n - 1) = A ^ (n - 1) * A * A⁻¹ : by rw [mul_assoc, mul_eq_mul A, mul_nonsing_inv _ h, mul_one] ... = A^n * A⁻¹ : by rw [← zpow_add_one h, sub_add_cancel] lemma zpow_add {A : M} (ha : is_unit A.det) (m n : ℤ) : A ^ (m + n) = A ^ m * A ^ n := begin induction n using int.induction_on with n ihn n ihn, case hz : { simp }, { simp only [← add_assoc, zpow_add_one ha, ihn, mul_assoc] }, { rw [zpow_sub_one ha, ← mul_assoc, ← ihn, ← zpow_sub_one ha, add_sub_assoc] } end lemma zpow_add_of_nonpos {A : M} {m n : ℤ} (hm : m ≤ 0) (hn : n ≤ 0) : A ^ (m + n) = A ^ m * A ^ n := begin rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h, { exact zpow_add (is_unit_det_of_left_inverse h) m n }, { obtain ⟨k, rfl⟩ := exists_eq_neg_of_nat hm, obtain ⟨l, rfl⟩ := exists_eq_neg_of_nat hn, simp_rw [←neg_add, ←int.coe_nat_add, zpow_neg_coe_nat, ←inv_pow', h, pow_add] } end lemma zpow_add_of_nonneg {A : M} {m n : ℤ} (hm : 0 ≤ m) (hn : 0 ≤ n) : A ^ (m + n) = A ^ m * A ^ n := begin obtain ⟨k, rfl⟩ := eq_coe_of_zero_le hm, obtain ⟨l, rfl⟩ := eq_coe_of_zero_le hn, rw [←int.coe_nat_add, zpow_coe_nat, zpow_coe_nat, zpow_coe_nat, pow_add], end theorem zpow_one_add {A : M} (h : is_unit A.det) (i : ℤ) : A ^ (1 + i) = A * A ^ i := by rw [zpow_add h, zpow_one] theorem semiconj_by.zpow_right {A X Y : M} (hx : is_unit X.det) (hy : is_unit Y.det) (h : semiconj_by A X Y) : ∀ m : ℤ, semiconj_by A (X^m) (Y^m) | (n : ℕ) := by simp [h.pow_right n] | -[1+n] := begin have hx' : is_unit (X ^ n.succ).det, { rw det_pow, exact hx.pow n.succ }, have hy' : is_unit (Y ^ n.succ).det, { rw det_pow, exact hy.pow n.succ }, rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, nonsing_inv_apply _ hx', nonsing_inv_apply _ hy', semiconj_by], refine (is_regular_of_is_left_regular_det hy'.is_regular.left).left _, rw [←mul_assoc, ←(h.pow_right n.succ).eq, mul_assoc, mul_eq_mul (X ^ _), mul_smul, mul_adjugate, mul_eq_mul, mul_eq_mul, mul_eq_mul, ←matrix.mul_assoc, mul_smul (Y ^ _) (↑(hy'.unit)⁻¹ : R), mul_adjugate, smul_smul, smul_smul, hx'.coe_inv_mul, hy'.coe_inv_mul, one_smul, matrix.mul_one, matrix.one_mul], end theorem commute.zpow_right {A B : M} (h : commute A B) (m : ℤ) : commute A (B^m) := begin rcases nonsing_inv_cancel_or_zero B with ⟨hB, hB'⟩ | hB, { refine semiconj_by.zpow_right _ _ h _; exact is_unit_det_of_left_inverse hB }, { cases m, { simpa using h.pow_right _ }, { simp [←inv_pow', hB] } } end theorem commute.zpow_left {A B : M} (h : commute A B) (m : ℤ) : commute (A^m) B := (commute.zpow_right h.symm m).symm theorem commute.zpow_zpow {A B : M} (h : commute A B) (m n : ℤ) : commute (A^m) (B^n) := commute.zpow_right (commute.zpow_left h _) _ theorem commute.zpow_self (A : M) (n : ℤ) : commute (A^n) A := commute.zpow_left (commute.refl A) _ theorem commute.self_zpow (A : M) (n : ℤ) : commute A (A^n) := commute.zpow_right (commute.refl A) _ theorem commute.zpow_zpow_self (A : M) (m n : ℤ) : commute (A^m) (A^n) := commute.zpow_zpow (commute.refl A) _ _ theorem zpow_bit0 (A : M) (n : ℤ) : A ^ bit0 n = A ^ n * A ^ n := begin cases le_total 0 n with nonneg nonpos, { exact zpow_add_of_nonneg nonneg nonneg }, { exact zpow_add_of_nonpos nonpos nonpos } end lemma zpow_add_one_of_ne_neg_one {A : M} : ∀ (n : ℤ), n ≠ -1 → A ^ (n + 1) = A ^ n * A | (n : ℕ) _ := by simp only [pow_succ', ← nat.cast_succ, zpow_coe_nat] | (-1) h := absurd rfl h | (-((n : ℕ) + 2)) _ := begin rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h, { apply zpow_add_one (is_unit_det_of_left_inverse h) }, { show A ^ (-((n + 1 : ℕ) : ℤ)) = A ^ -((n + 2 : ℕ) : ℤ) * A, simp_rw [zpow_neg_coe_nat, ←inv_pow', h, zero_pow nat.succ_pos', zero_mul] } end theorem zpow_bit1 (A : M) (n : ℤ) : A ^ bit1 n = A ^ n * A ^ n * A := begin rw [bit1, zpow_add_one_of_ne_neg_one, zpow_bit0], intro h, simpa using congr_arg bodd h end theorem zpow_mul (A : M) (h : is_unit A.det) : ∀ m n : ℤ, A ^ (m * n) = (A ^ m) ^ n | (m : ℕ) (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, ← pow_mul, ← zpow_coe_nat, int.coe_nat_mul] | (m : ℕ) -[1+ n] := by rw [zpow_coe_nat, zpow_neg_succ_of_nat, ← pow_mul, coe_nat_mul_neg_succ, ←int.coe_nat_mul, zpow_neg_coe_nat] | -[1+ m] (n : ℕ) := by rw [zpow_coe_nat, zpow_neg_succ_of_nat, ← inv_pow', ← pow_mul, neg_succ_mul_coe_nat, ←int.coe_nat_mul, zpow_neg_coe_nat, inv_pow'] | -[1+ m] -[1+ n] := by { rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, neg_succ_mul_neg_succ, ←int.coe_nat_mul, zpow_coe_nat, inv_pow', ←pow_mul, nonsing_inv_nonsing_inv], rw det_pow, exact h.pow _ } theorem zpow_mul' (A : M) (h : is_unit A.det) (m n : ℤ) : A ^ (m * n) = (A ^ n) ^ m := by rw [mul_comm, zpow_mul _ h] @[simp, norm_cast] lemma coe_units_zpow (u : Mˣ) : ∀ (n : ℤ), ((u ^ n : Mˣ) : M) = u ^ n | (n : ℕ) := by rw [_root_.zpow_coe_nat, zpow_coe_nat, units.coe_pow] | -[1+k] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, ←inv_pow, u⁻¹.coe_pow, ←inv_pow', coe_units_inv] lemma zpow_ne_zero_of_is_unit_det [nonempty n'] [nontrivial R] {A : M} (ha : is_unit A.det) (z : ℤ) : A ^ z ≠ 0 := begin have := ha.det_zpow z, contrapose! this, rw [this, det_zero ‹_›], exact not_is_unit_zero end lemma zpow_sub {A : M} (ha : is_unit A.det) (z1 z2 : ℤ) : A ^ (z1 - z2) = A ^ z1 / A ^ z2 := by rw [sub_eq_add_neg, zpow_add ha, zpow_neg ha, div_eq_mul_inv] lemma commute.mul_zpow {A B : M} (h : commute A B) : ∀ (i : ℤ), (A * B) ^ i = (A ^ i) * (B ^ i) | (n : ℕ) := by simp [h.mul_pow n, -mul_eq_mul] | -[1+n] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, mul_eq_mul (_⁻¹), ←mul_inv_rev, ←mul_eq_mul, h.mul_pow n.succ, (h.pow_pow _ _).eq] theorem zpow_bit0' (A : M) (n : ℤ) : A ^ bit0 n = (A * A) ^ n := (zpow_bit0 A n).trans (commute.mul_zpow (commute.refl A) n).symm theorem zpow_bit1' (A : M) (n : ℤ) : A ^ bit1 n = (A * A) ^ n * A := by rw [zpow_bit1, commute.mul_zpow (commute.refl A)] theorem zpow_neg_mul_zpow_self (n : ℤ) {A : M} (h : is_unit A.det) : A ^ (-n) * A ^ n = 1 := by rw [zpow_neg h, mul_eq_mul, nonsing_inv_mul _ (h.det_zpow _)] theorem one_div_pow {A : M} (n : ℕ) : (1 / A) ^ n = 1 / A ^ n := by simp only [one_div, inv_pow'] theorem one_div_zpow {A : M} (n : ℤ) : (1 / A) ^ n = 1 / A ^ n := by simp only [one_div, inv_zpow] @[simp] theorem transpose_zpow (A : M) : ∀ (n : ℤ), (A ^ n)ᵀ = Aᵀ ^ n | (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, transpose_pow] | -[1+ n] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, transpose_nonsing_inv, transpose_pow] @[simp] theorem conj_transpose_zpow [star_ring R] (A : M) : ∀ (n : ℤ), (A ^ n)ᴴ = Aᴴ ^ n | (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, conj_transpose_pow] | -[1+ n] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, conj_transpose_nonsing_inv, conj_transpose_pow] end zpow end matrix