Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 12,476 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/-
Copyright (c) 2021 Yakov Pechersky. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yakov Pechersky
-/
import linear_algebra.matrix.nonsingular_inverse

/-!
# Integer powers of square matrices

In this file, we define integer power of matrices, relying on
the nonsingular inverse definition for negative powers.

## Implementation details

The main definition is a direct recursive call on the integer inductive type,
as provided by the `div_inv_monoid.zpow` default implementation.
The lemma names are taken from `algebra.group_with_zero.power`.

## Tags

matrix inverse, matrix powers
-/

open_locale matrix

namespace matrix

variables {n' : Type*} [decidable_eq n'] [fintype n'] {R : Type*} [comm_ring R]

local notation `M` := matrix n' n' R

noncomputable instance : div_inv_monoid M :=
{ ..(show monoid M, by apply_instance),
  ..(show has_inv M, by apply_instance) }

section nat_pow

@[simp] theorem inv_pow' (A : M) (n : ℕ) : (A⁻¹) ^ n = (A ^ n)⁻¹ :=
begin
  induction n with n ih,
  { simp },
  { rw [pow_succ A, mul_eq_mul, mul_inv_rev, ← ih, ← mul_eq_mul, ← pow_succ'] }
end

theorem pow_sub' (A : M) {m n : ℕ} (ha : is_unit A.det) (h : n ≤ m) :
  A ^ (m - n) = A ^ m ⬝ (A ^ n)⁻¹ :=
begin
  rw [←tsub_add_cancel_of_le h, pow_add, mul_eq_mul, matrix.mul_assoc, mul_nonsing_inv,
      tsub_add_cancel_of_le h, matrix.mul_one],
  simpa using ha.pow n
end

theorem pow_inv_comm' (A : M) (m n : ℕ) : (A⁻¹) ^ m ⬝ A ^ n = A ^ n ⬝ (A⁻¹) ^ m :=
begin
  induction n with n IH generalizing m,
  { simp },
  cases m,
  { simp },
  rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h,
  { calc  A⁻¹ ^ (m + 1) ⬝ A ^ (n + 1)
        = A⁻¹ ^ m ⬝ (A⁻¹ ⬝ A) ⬝ A ^ n :
          by simp only [pow_succ' A⁻¹, pow_succ A, mul_eq_mul, matrix.mul_assoc]
    ... = A ^ n ⬝ A⁻¹ ^ m :
          by simp only [h, matrix.mul_one, matrix.one_mul, IH m]
    ... = A ^ n ⬝ (A ⬝ A⁻¹) ⬝ A⁻¹ ^ m :
          by simp only [h', matrix.mul_one, matrix.one_mul]
    ... = A ^ (n + 1) ⬝ A⁻¹ ^ (m + 1) :
          by simp only [pow_succ' A, pow_succ A⁻¹, mul_eq_mul, matrix.mul_assoc] },
  { simp [h] }
end

end nat_pow

section zpow
open int

@[simp] theorem one_zpow : ∀ (n : ℤ), (1 : M) ^ n = 1
| (n : ℕ) := by rw [zpow_coe_nat, one_pow]
| -[1+ n] := by rw [zpow_neg_succ_of_nat, one_pow, inv_one]

lemma zero_zpow : ∀ z : ℤ, z0 → (0 : M) ^ z = 0
| (n : ℕ) h := by { rw [zpow_coe_nat, zero_pow], refine lt_of_le_of_ne n.zero_le (ne.symm _),
  simpa using h  }
| -[1+n]  h := by simp [zero_pow n.zero_lt_succ]

lemma zero_zpow_eq (n : ℤ) : (0 : M) ^ n = if n = 0 then 1 else 0 :=
begin
  split_ifs with h,
  { rw [h, zpow_zero] },
  { rw [zero_zpow _ h] }
end

theorem inv_zpow (A : M) : ∀n:ℤ, A⁻¹ ^ n = (A ^ n)⁻¹
| (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, inv_pow']
| -[1+ n] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, inv_pow']

@[simp] lemma zpow_neg_one (A : M) : A ^ (-1 : ℤ) = A⁻¹ :=
begin
  convert div_inv_monoid.zpow_neg' 0 A,
  simp only [zpow_one, int.coe_nat_zero, int.coe_nat_succ, zpow_eq_pow, zero_add]
end

theorem zpow_coe_nat (A : M) (n : ℕ) : A ^ (n : ℤ) = (A ^ n) :=
zpow_coe_nat _ _

@[simp] theorem zpow_neg_coe_nat (A : M) (n : ℕ) : A ^ (-n : ℤ) = (A ^ n)⁻¹ :=
begin
  cases n,
  { simp },
  { exact div_inv_monoid.zpow_neg' _ _ }
end

lemma _root_.is_unit.det_zpow {A : M} (h : is_unit A.det) (n : ℤ) : is_unit (A ^ n).det :=
begin
  cases n,
  { simpa using h.pow n },
  { simpa using h.pow n.succ }
end

lemma is_unit_det_zpow_iff {A : M} {z : ℤ} :
  is_unit (A ^ z).det ↔ is_unit A.det ∨ z = 0 :=
begin
  induction z using int.induction_on with z IH z IH,
  { simp },
  { rw [←int.coe_nat_succ, zpow_coe_nat, det_pow, is_unit_pos_pow_iff (z.zero_lt_succ),
        ←int.coe_nat_zero, int.coe_nat_eq_coe_nat_iff],
    simp },
  { rw [←neg_add', ←int.coe_nat_succ, zpow_neg_coe_nat, is_unit_nonsing_inv_det_iff,
        det_pow, is_unit_pos_pow_iff (z.zero_lt_succ), neg_eq_zero, ←int.coe_nat_zero,
        int.coe_nat_eq_coe_nat_iff],
    simp }
end

theorem zpow_neg {A : M} (h : is_unit A.det) : ∀ (n : ℤ), A ^ -n = (A ^ n)⁻¹
| (n : ℕ) := zpow_neg_coe_nat _ _
| -[1+ n] := by { rw [zpow_neg_succ_of_nat, neg_neg_of_nat_succ, of_nat_eq_coe, zpow_coe_nat,
                      nonsing_inv_nonsing_inv],
                  rw det_pow,
                  exact h.pow _ }

lemma inv_zpow' {A : M} (h : is_unit A.det) (n : ℤ) :
  (A ⁻¹) ^ n = A ^ (-n) :=
by rw [zpow_neg h, inv_zpow]

lemma zpow_add_one {A : M} (h : is_unit A.det) : ∀ n : ℤ, A ^ (n + 1) = A ^ n * A
| (n : ℕ)        := by simp only [← nat.cast_succ, pow_succ', zpow_coe_nat]
| -((n : ℕ) + 1) :=
calc  A ^ (-(n + 1) + 1 : ℤ)
    = (A ^ n)⁻¹ : by rw [neg_add, neg_add_cancel_right, zpow_neg h, zpow_coe_nat]
... = (A ⬝ A ^ n)⁻¹ ⬝ A : by rw [mul_inv_rev, matrix.mul_assoc, nonsing_inv_mul _ h, matrix.mul_one]
... = A ^ -(n + 1 : ℤ) * A :
      by rw [zpow_neg h, ← int.coe_nat_succ, zpow_coe_nat, pow_succ, mul_eq_mul, mul_eq_mul]

lemma zpow_sub_one {A : M} (h : is_unit A.det) (n : ℤ) : A ^ (n - 1) = A ^ n * A⁻¹ :=
calc A ^ (n - 1) = A ^ (n - 1) * A * A⁻¹ : by rw [mul_assoc, mul_eq_mul A, mul_nonsing_inv _ h,
                                                  mul_one]
             ... = A^n * A⁻¹             : by rw [← zpow_add_one h, sub_add_cancel]

lemma zpow_add {A : M} (ha : is_unit A.det) (m n : ℤ) : A ^ (m + n) = A ^ m * A ^ n :=
begin
  induction n using int.induction_on with n ihn n ihn,
  case hz : { simp },
  { simp only [← add_assoc, zpow_add_one ha, ihn, mul_assoc] },
  { rw [zpow_sub_one ha, ← mul_assoc, ← ihn, ← zpow_sub_one ha, add_sub_assoc] }
end

lemma zpow_add_of_nonpos {A : M} {m n : ℤ} (hm : m0) (hn : n0) :
  A ^ (m + n) = A ^ m * A ^ n :=
begin
  rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h,
  { exact zpow_add (is_unit_det_of_left_inverse h) m n },
  { obtain ⟨k, rfl⟩ := exists_eq_neg_of_nat hm,
    obtain ⟨l, rfl⟩ := exists_eq_neg_of_nat hn,
    simp_rw [←neg_add, ←int.coe_nat_add, zpow_neg_coe_nat, ←inv_pow', h, pow_add] }
end

lemma zpow_add_of_nonneg {A : M} {m n : ℤ} (hm : 0 ≤ m) (hn : 0 ≤ n) :
  A ^ (m + n) = A ^ m * A ^ n :=
begin
  obtain ⟨k, rfl⟩ := eq_coe_of_zero_le hm,
  obtain ⟨l, rfl⟩ := eq_coe_of_zero_le hn,
  rw [←int.coe_nat_add, zpow_coe_nat, zpow_coe_nat, zpow_coe_nat, pow_add],
end

theorem zpow_one_add {A : M} (h : is_unit A.det) (i : ℤ) : A ^ (1 + i) = A * A ^ i :=
by rw [zpow_add h, zpow_one]

theorem semiconj_by.zpow_right {A X Y : M} (hx : is_unit X.det) (hy : is_unit Y.det)
  (h : semiconj_by A X Y) :
  ∀ m : ℤ, semiconj_by A (X^m) (Y^m)
| (n : ℕ) := by simp [h.pow_right n]
| -[1+n]  := begin
  have hx' : is_unit (X ^ n.succ).det,
  { rw det_pow,
    exact hx.pow n.succ },
  have hy' : is_unit (Y ^ n.succ).det,
  { rw det_pow,
    exact hy.pow n.succ },
  rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, nonsing_inv_apply _ hx', nonsing_inv_apply _ hy',
      semiconj_by],
  refine (is_regular_of_is_left_regular_det hy'.is_regular.left).left _,
  rw [←mul_assoc, ←(h.pow_right n.succ).eq, mul_assoc, mul_eq_mul (X ^ _), mul_smul, mul_adjugate,
      mul_eq_mul, mul_eq_mul, mul_eq_mul, ←matrix.mul_assoc, mul_smul (Y ^ _) (↑(hy'.unit)⁻¹ : R),
      mul_adjugate, smul_smul, smul_smul, hx'.coe_inv_mul,
      hy'.coe_inv_mul, one_smul, matrix.mul_one, matrix.one_mul],
end

theorem commute.zpow_right {A B : M} (h : commute A B) (m : ℤ) : commute A (B^m) :=
begin
  rcases nonsing_inv_cancel_or_zero B with ⟨hB, hB'⟩ | hB,
  { refine semiconj_by.zpow_right _ _ h _;
    exact is_unit_det_of_left_inverse hB },
  { cases m,
    { simpa using h.pow_right _ },
    { simp [←inv_pow', hB] } }
end

theorem commute.zpow_left {A B : M} (h : commute A B) (m : ℤ) : commute (A^m) B :=
(commute.zpow_right h.symm m).symm

theorem commute.zpow_zpow {A B : M} (h : commute A B) (m n : ℤ) : commute (A^m) (B^n) :=
commute.zpow_right (commute.zpow_left h _) _

theorem commute.zpow_self (A : M) (n : ℤ) : commute (A^n) A :=
commute.zpow_left (commute.refl A) _

theorem commute.self_zpow (A : M) (n : ℤ) : commute A (A^n) :=
commute.zpow_right (commute.refl A) _

theorem commute.zpow_zpow_self (A : M) (m n : ℤ) : commute (A^m) (A^n) :=
commute.zpow_zpow (commute.refl A) _ _

theorem zpow_bit0 (A : M) (n : ℤ) : A ^ bit0 n = A ^ n * A ^ n :=
begin
  cases le_total 0 n with nonneg nonpos,
  { exact zpow_add_of_nonneg nonneg nonneg },
  { exact zpow_add_of_nonpos nonpos nonpos }
end

lemma zpow_add_one_of_ne_neg_one {A : M} : ∀ (n : ℤ), n ≠ -1 → A ^ (n + 1) = A ^ n * A
| (n : ℕ) _ := by simp only [pow_succ', ← nat.cast_succ, zpow_coe_nat]
| (-1) h := absurd rfl h
| (-((n : ℕ) + 2)) _ := begin
  rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h,
  { apply zpow_add_one (is_unit_det_of_left_inverse h) },
  { show A ^ (-((n + 1 : ℕ) : ℤ)) = A ^ -((n + 2 : ℕ) : ℤ) * A,
    simp_rw [zpow_neg_coe_nat, ←inv_pow', h, zero_pow nat.succ_pos', zero_mul] }
end

theorem zpow_bit1 (A : M) (n : ℤ) : A ^ bit1 n = A ^ n * A ^ n * A :=
begin
  rw [bit1, zpow_add_one_of_ne_neg_one, zpow_bit0],
  intro h,
  simpa using congr_arg bodd h
end

theorem zpow_mul (A : M) (h : is_unit A.det) : ∀ m n : ℤ, A ^ (m * n) = (A ^ m) ^ n
| (m : ℕ) (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, ← pow_mul, ← zpow_coe_nat, int.coe_nat_mul]
| (m : ℕ) -[1+ n] := by rw [zpow_coe_nat, zpow_neg_succ_of_nat, ← pow_mul, coe_nat_mul_neg_succ,
    ←int.coe_nat_mul, zpow_neg_coe_nat]
| -[1+ m] (n : ℕ) := by rw [zpow_coe_nat, zpow_neg_succ_of_nat, ← inv_pow', ← pow_mul,
    neg_succ_mul_coe_nat, ←int.coe_nat_mul, zpow_neg_coe_nat, inv_pow']
| -[1+ m] -[1+ n] := by { rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, neg_succ_mul_neg_succ,
    ←int.coe_nat_mul, zpow_coe_nat, inv_pow', ←pow_mul, nonsing_inv_nonsing_inv],
    rw det_pow,
    exact h.pow _ }

theorem zpow_mul' (A : M) (h : is_unit A.det) (m n : ℤ) : A ^ (m * n) = (A ^ n) ^ m :=
by rw [mul_comm, zpow_mul _ h]

@[simp, norm_cast] lemma coe_units_zpow (u : Mˣ) :
  ∀ (n : ℤ), ((u ^ n : Mˣ) : M) = u ^ n
| (n : ℕ) := by rw [_root_.zpow_coe_nat, zpow_coe_nat, units.coe_pow]
| -[1+k] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, ←inv_pow, u⁻¹.coe_pow, ←inv_pow',
                   coe_units_inv]

lemma zpow_ne_zero_of_is_unit_det [nonempty n'] [nontrivial R] {A : M}
  (ha : is_unit A.det) (z : ℤ) : A ^ z ≠ 0 :=
begin
  have := ha.det_zpow z,
  contrapose! this,
  rw [this, det_zero ‹_›],
  exact not_is_unit_zero
end

lemma zpow_sub {A : M} (ha : is_unit A.det) (z1 z2 : ℤ) : A ^ (z1 - z2) = A ^ z1 / A ^ z2 :=
by rw [sub_eq_add_neg, zpow_add ha, zpow_neg ha, div_eq_mul_inv]

lemma commute.mul_zpow {A B : M} (h : commute A B) :
  ∀ (i : ℤ), (A * B) ^ i = (A ^ i) * (B ^ i)
| (n : ℕ) := by simp [h.mul_pow n, -mul_eq_mul]
| -[1+n]  := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, zpow_neg_succ_of_nat,
                    mul_eq_mul (_⁻¹), ←mul_inv_rev, ←mul_eq_mul, h.mul_pow n.succ,
                    (h.pow_pow _ _).eq]

theorem zpow_bit0' (A : M) (n : ℤ) : A ^ bit0 n = (A * A) ^ n :=
(zpow_bit0 A n).trans (commute.mul_zpow (commute.refl A) n).symm

theorem zpow_bit1' (A : M) (n : ℤ) : A ^ bit1 n = (A * A) ^ n * A :=
by rw [zpow_bit1, commute.mul_zpow (commute.refl A)]

theorem zpow_neg_mul_zpow_self (n : ℤ) {A : M} (h : is_unit A.det) :
  A ^ (-n) * A ^ n = 1 :=
by rw [zpow_neg h, mul_eq_mul, nonsing_inv_mul _ (h.det_zpow _)]

theorem one_div_pow {A : M} (n : ℕ) :
  (1 / A) ^ n = 1 / A ^ n :=
by simp only [one_div, inv_pow']

theorem one_div_zpow {A : M} (n : ℤ) :
  (1 / A) ^ n = 1 / A ^ n :=
by simp only [one_div, inv_zpow]

@[simp] theorem transpose_zpow (A : M) : ∀ (n : ℤ), (A ^ n)ᵀ = Aᵀ ^ n
| (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, transpose_pow]
| -[1+ n] := by
  rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, transpose_nonsing_inv, transpose_pow]

@[simp] theorem conj_transpose_zpow [star_ring R] (A : M) : ∀ (n : ℤ), (A ^ n)ᴴ = Aᴴ ^ n
| (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, conj_transpose_pow]
| -[1+ n] := by
  rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, conj_transpose_nonsing_inv, conj_transpose_pow]

end zpow

end matrix