Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 12,476 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
/-
Copyright (c) 2021 Yakov Pechersky. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yakov Pechersky
-/
import linear_algebra.matrix.nonsingular_inverse
/-!
# Integer powers of square matrices
In this file, we define integer power of matrices, relying on
the nonsingular inverse definition for negative powers.
## Implementation details
The main definition is a direct recursive call on the integer inductive type,
as provided by the `div_inv_monoid.zpow` default implementation.
The lemma names are taken from `algebra.group_with_zero.power`.
## Tags
matrix inverse, matrix powers
-/
open_locale matrix
namespace matrix
variables {n' : Type*} [decidable_eq n'] [fintype n'] {R : Type*} [comm_ring R]
local notation `M` := matrix n' n' R
noncomputable instance : div_inv_monoid M :=
{ ..(show monoid M, by apply_instance),
..(show has_inv M, by apply_instance) }
section nat_pow
@[simp] theorem inv_pow' (A : M) (n : ℕ) : (A⁻¹) ^ n = (A ^ n)⁻¹ :=
begin
induction n with n ih,
{ simp },
{ rw [pow_succ A, mul_eq_mul, mul_inv_rev, ← ih, ← mul_eq_mul, ← pow_succ'] }
end
theorem pow_sub' (A : M) {m n : ℕ} (ha : is_unit A.det) (h : n ≤ m) :
A ^ (m - n) = A ^ m ⬝ (A ^ n)⁻¹ :=
begin
rw [←tsub_add_cancel_of_le h, pow_add, mul_eq_mul, matrix.mul_assoc, mul_nonsing_inv,
tsub_add_cancel_of_le h, matrix.mul_one],
simpa using ha.pow n
end
theorem pow_inv_comm' (A : M) (m n : ℕ) : (A⁻¹) ^ m ⬝ A ^ n = A ^ n ⬝ (A⁻¹) ^ m :=
begin
induction n with n IH generalizing m,
{ simp },
cases m,
{ simp },
rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h,
{ calc A⁻¹ ^ (m + 1) ⬝ A ^ (n + 1)
= A⁻¹ ^ m ⬝ (A⁻¹ ⬝ A) ⬝ A ^ n :
by simp only [pow_succ' A⁻¹, pow_succ A, mul_eq_mul, matrix.mul_assoc]
... = A ^ n ⬝ A⁻¹ ^ m :
by simp only [h, matrix.mul_one, matrix.one_mul, IH m]
... = A ^ n ⬝ (A ⬝ A⁻¹) ⬝ A⁻¹ ^ m :
by simp only [h', matrix.mul_one, matrix.one_mul]
... = A ^ (n + 1) ⬝ A⁻¹ ^ (m + 1) :
by simp only [pow_succ' A, pow_succ A⁻¹, mul_eq_mul, matrix.mul_assoc] },
{ simp [h] }
end
end nat_pow
section zpow
open int
@[simp] theorem one_zpow : ∀ (n : ℤ), (1 : M) ^ n = 1
| (n : ℕ) := by rw [zpow_coe_nat, one_pow]
| -[1+ n] := by rw [zpow_neg_succ_of_nat, one_pow, inv_one]
lemma zero_zpow : ∀ z : ℤ, z ≠ 0 → (0 : M) ^ z = 0
| (n : ℕ) h := by { rw [zpow_coe_nat, zero_pow], refine lt_of_le_of_ne n.zero_le (ne.symm _),
simpa using h }
| -[1+n] h := by simp [zero_pow n.zero_lt_succ]
lemma zero_zpow_eq (n : ℤ) : (0 : M) ^ n = if n = 0 then 1 else 0 :=
begin
split_ifs with h,
{ rw [h, zpow_zero] },
{ rw [zero_zpow _ h] }
end
theorem inv_zpow (A : M) : ∀n:ℤ, A⁻¹ ^ n = (A ^ n)⁻¹
| (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, inv_pow']
| -[1+ n] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, inv_pow']
@[simp] lemma zpow_neg_one (A : M) : A ^ (-1 : ℤ) = A⁻¹ :=
begin
convert div_inv_monoid.zpow_neg' 0 A,
simp only [zpow_one, int.coe_nat_zero, int.coe_nat_succ, zpow_eq_pow, zero_add]
end
theorem zpow_coe_nat (A : M) (n : ℕ) : A ^ (n : ℤ) = (A ^ n) :=
zpow_coe_nat _ _
@[simp] theorem zpow_neg_coe_nat (A : M) (n : ℕ) : A ^ (-n : ℤ) = (A ^ n)⁻¹ :=
begin
cases n,
{ simp },
{ exact div_inv_monoid.zpow_neg' _ _ }
end
lemma _root_.is_unit.det_zpow {A : M} (h : is_unit A.det) (n : ℤ) : is_unit (A ^ n).det :=
begin
cases n,
{ simpa using h.pow n },
{ simpa using h.pow n.succ }
end
lemma is_unit_det_zpow_iff {A : M} {z : ℤ} :
is_unit (A ^ z).det ↔ is_unit A.det ∨ z = 0 :=
begin
induction z using int.induction_on with z IH z IH,
{ simp },
{ rw [←int.coe_nat_succ, zpow_coe_nat, det_pow, is_unit_pos_pow_iff (z.zero_lt_succ),
←int.coe_nat_zero, int.coe_nat_eq_coe_nat_iff],
simp },
{ rw [←neg_add', ←int.coe_nat_succ, zpow_neg_coe_nat, is_unit_nonsing_inv_det_iff,
det_pow, is_unit_pos_pow_iff (z.zero_lt_succ), neg_eq_zero, ←int.coe_nat_zero,
int.coe_nat_eq_coe_nat_iff],
simp }
end
theorem zpow_neg {A : M} (h : is_unit A.det) : ∀ (n : ℤ), A ^ -n = (A ^ n)⁻¹
| (n : ℕ) := zpow_neg_coe_nat _ _
| -[1+ n] := by { rw [zpow_neg_succ_of_nat, neg_neg_of_nat_succ, of_nat_eq_coe, zpow_coe_nat,
nonsing_inv_nonsing_inv],
rw det_pow,
exact h.pow _ }
lemma inv_zpow' {A : M} (h : is_unit A.det) (n : ℤ) :
(A ⁻¹) ^ n = A ^ (-n) :=
by rw [zpow_neg h, inv_zpow]
lemma zpow_add_one {A : M} (h : is_unit A.det) : ∀ n : ℤ, A ^ (n + 1) = A ^ n * A
| (n : ℕ) := by simp only [← nat.cast_succ, pow_succ', zpow_coe_nat]
| -((n : ℕ) + 1) :=
calc A ^ (-(n + 1) + 1 : ℤ)
= (A ^ n)⁻¹ : by rw [neg_add, neg_add_cancel_right, zpow_neg h, zpow_coe_nat]
... = (A ⬝ A ^ n)⁻¹ ⬝ A : by rw [mul_inv_rev, matrix.mul_assoc, nonsing_inv_mul _ h, matrix.mul_one]
... = A ^ -(n + 1 : ℤ) * A :
by rw [zpow_neg h, ← int.coe_nat_succ, zpow_coe_nat, pow_succ, mul_eq_mul, mul_eq_mul]
lemma zpow_sub_one {A : M} (h : is_unit A.det) (n : ℤ) : A ^ (n - 1) = A ^ n * A⁻¹ :=
calc A ^ (n - 1) = A ^ (n - 1) * A * A⁻¹ : by rw [mul_assoc, mul_eq_mul A, mul_nonsing_inv _ h,
mul_one]
... = A^n * A⁻¹ : by rw [← zpow_add_one h, sub_add_cancel]
lemma zpow_add {A : M} (ha : is_unit A.det) (m n : ℤ) : A ^ (m + n) = A ^ m * A ^ n :=
begin
induction n using int.induction_on with n ihn n ihn,
case hz : { simp },
{ simp only [← add_assoc, zpow_add_one ha, ihn, mul_assoc] },
{ rw [zpow_sub_one ha, ← mul_assoc, ← ihn, ← zpow_sub_one ha, add_sub_assoc] }
end
lemma zpow_add_of_nonpos {A : M} {m n : ℤ} (hm : m ≤ 0) (hn : n ≤ 0) :
A ^ (m + n) = A ^ m * A ^ n :=
begin
rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h,
{ exact zpow_add (is_unit_det_of_left_inverse h) m n },
{ obtain ⟨k, rfl⟩ := exists_eq_neg_of_nat hm,
obtain ⟨l, rfl⟩ := exists_eq_neg_of_nat hn,
simp_rw [←neg_add, ←int.coe_nat_add, zpow_neg_coe_nat, ←inv_pow', h, pow_add] }
end
lemma zpow_add_of_nonneg {A : M} {m n : ℤ} (hm : 0 ≤ m) (hn : 0 ≤ n) :
A ^ (m + n) = A ^ m * A ^ n :=
begin
obtain ⟨k, rfl⟩ := eq_coe_of_zero_le hm,
obtain ⟨l, rfl⟩ := eq_coe_of_zero_le hn,
rw [←int.coe_nat_add, zpow_coe_nat, zpow_coe_nat, zpow_coe_nat, pow_add],
end
theorem zpow_one_add {A : M} (h : is_unit A.det) (i : ℤ) : A ^ (1 + i) = A * A ^ i :=
by rw [zpow_add h, zpow_one]
theorem semiconj_by.zpow_right {A X Y : M} (hx : is_unit X.det) (hy : is_unit Y.det)
(h : semiconj_by A X Y) :
∀ m : ℤ, semiconj_by A (X^m) (Y^m)
| (n : ℕ) := by simp [h.pow_right n]
| -[1+n] := begin
have hx' : is_unit (X ^ n.succ).det,
{ rw det_pow,
exact hx.pow n.succ },
have hy' : is_unit (Y ^ n.succ).det,
{ rw det_pow,
exact hy.pow n.succ },
rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, nonsing_inv_apply _ hx', nonsing_inv_apply _ hy',
semiconj_by],
refine (is_regular_of_is_left_regular_det hy'.is_regular.left).left _,
rw [←mul_assoc, ←(h.pow_right n.succ).eq, mul_assoc, mul_eq_mul (X ^ _), mul_smul, mul_adjugate,
mul_eq_mul, mul_eq_mul, mul_eq_mul, ←matrix.mul_assoc, mul_smul (Y ^ _) (↑(hy'.unit)⁻¹ : R),
mul_adjugate, smul_smul, smul_smul, hx'.coe_inv_mul,
hy'.coe_inv_mul, one_smul, matrix.mul_one, matrix.one_mul],
end
theorem commute.zpow_right {A B : M} (h : commute A B) (m : ℤ) : commute A (B^m) :=
begin
rcases nonsing_inv_cancel_or_zero B with ⟨hB, hB'⟩ | hB,
{ refine semiconj_by.zpow_right _ _ h _;
exact is_unit_det_of_left_inverse hB },
{ cases m,
{ simpa using h.pow_right _ },
{ simp [←inv_pow', hB] } }
end
theorem commute.zpow_left {A B : M} (h : commute A B) (m : ℤ) : commute (A^m) B :=
(commute.zpow_right h.symm m).symm
theorem commute.zpow_zpow {A B : M} (h : commute A B) (m n : ℤ) : commute (A^m) (B^n) :=
commute.zpow_right (commute.zpow_left h _) _
theorem commute.zpow_self (A : M) (n : ℤ) : commute (A^n) A :=
commute.zpow_left (commute.refl A) _
theorem commute.self_zpow (A : M) (n : ℤ) : commute A (A^n) :=
commute.zpow_right (commute.refl A) _
theorem commute.zpow_zpow_self (A : M) (m n : ℤ) : commute (A^m) (A^n) :=
commute.zpow_zpow (commute.refl A) _ _
theorem zpow_bit0 (A : M) (n : ℤ) : A ^ bit0 n = A ^ n * A ^ n :=
begin
cases le_total 0 n with nonneg nonpos,
{ exact zpow_add_of_nonneg nonneg nonneg },
{ exact zpow_add_of_nonpos nonpos nonpos }
end
lemma zpow_add_one_of_ne_neg_one {A : M} : ∀ (n : ℤ), n ≠ -1 → A ^ (n + 1) = A ^ n * A
| (n : ℕ) _ := by simp only [pow_succ', ← nat.cast_succ, zpow_coe_nat]
| (-1) h := absurd rfl h
| (-((n : ℕ) + 2)) _ := begin
rcases nonsing_inv_cancel_or_zero A with ⟨h, h'⟩ | h,
{ apply zpow_add_one (is_unit_det_of_left_inverse h) },
{ show A ^ (-((n + 1 : ℕ) : ℤ)) = A ^ -((n + 2 : ℕ) : ℤ) * A,
simp_rw [zpow_neg_coe_nat, ←inv_pow', h, zero_pow nat.succ_pos', zero_mul] }
end
theorem zpow_bit1 (A : M) (n : ℤ) : A ^ bit1 n = A ^ n * A ^ n * A :=
begin
rw [bit1, zpow_add_one_of_ne_neg_one, zpow_bit0],
intro h,
simpa using congr_arg bodd h
end
theorem zpow_mul (A : M) (h : is_unit A.det) : ∀ m n : ℤ, A ^ (m * n) = (A ^ m) ^ n
| (m : ℕ) (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, ← pow_mul, ← zpow_coe_nat, int.coe_nat_mul]
| (m : ℕ) -[1+ n] := by rw [zpow_coe_nat, zpow_neg_succ_of_nat, ← pow_mul, coe_nat_mul_neg_succ,
←int.coe_nat_mul, zpow_neg_coe_nat]
| -[1+ m] (n : ℕ) := by rw [zpow_coe_nat, zpow_neg_succ_of_nat, ← inv_pow', ← pow_mul,
neg_succ_mul_coe_nat, ←int.coe_nat_mul, zpow_neg_coe_nat, inv_pow']
| -[1+ m] -[1+ n] := by { rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, neg_succ_mul_neg_succ,
←int.coe_nat_mul, zpow_coe_nat, inv_pow', ←pow_mul, nonsing_inv_nonsing_inv],
rw det_pow,
exact h.pow _ }
theorem zpow_mul' (A : M) (h : is_unit A.det) (m n : ℤ) : A ^ (m * n) = (A ^ n) ^ m :=
by rw [mul_comm, zpow_mul _ h]
@[simp, norm_cast] lemma coe_units_zpow (u : Mˣ) :
∀ (n : ℤ), ((u ^ n : Mˣ) : M) = u ^ n
| (n : ℕ) := by rw [_root_.zpow_coe_nat, zpow_coe_nat, units.coe_pow]
| -[1+k] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, ←inv_pow, u⁻¹.coe_pow, ←inv_pow',
coe_units_inv]
lemma zpow_ne_zero_of_is_unit_det [nonempty n'] [nontrivial R] {A : M}
(ha : is_unit A.det) (z : ℤ) : A ^ z ≠ 0 :=
begin
have := ha.det_zpow z,
contrapose! this,
rw [this, det_zero ‹_›],
exact not_is_unit_zero
end
lemma zpow_sub {A : M} (ha : is_unit A.det) (z1 z2 : ℤ) : A ^ (z1 - z2) = A ^ z1 / A ^ z2 :=
by rw [sub_eq_add_neg, zpow_add ha, zpow_neg ha, div_eq_mul_inv]
lemma commute.mul_zpow {A B : M} (h : commute A B) :
∀ (i : ℤ), (A * B) ^ i = (A ^ i) * (B ^ i)
| (n : ℕ) := by simp [h.mul_pow n, -mul_eq_mul]
| -[1+n] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, zpow_neg_succ_of_nat,
mul_eq_mul (_⁻¹), ←mul_inv_rev, ←mul_eq_mul, h.mul_pow n.succ,
(h.pow_pow _ _).eq]
theorem zpow_bit0' (A : M) (n : ℤ) : A ^ bit0 n = (A * A) ^ n :=
(zpow_bit0 A n).trans (commute.mul_zpow (commute.refl A) n).symm
theorem zpow_bit1' (A : M) (n : ℤ) : A ^ bit1 n = (A * A) ^ n * A :=
by rw [zpow_bit1, commute.mul_zpow (commute.refl A)]
theorem zpow_neg_mul_zpow_self (n : ℤ) {A : M} (h : is_unit A.det) :
A ^ (-n) * A ^ n = 1 :=
by rw [zpow_neg h, mul_eq_mul, nonsing_inv_mul _ (h.det_zpow _)]
theorem one_div_pow {A : M} (n : ℕ) :
(1 / A) ^ n = 1 / A ^ n :=
by simp only [one_div, inv_pow']
theorem one_div_zpow {A : M} (n : ℤ) :
(1 / A) ^ n = 1 / A ^ n :=
by simp only [one_div, inv_zpow]
@[simp] theorem transpose_zpow (A : M) : ∀ (n : ℤ), (A ^ n)ᵀ = Aᵀ ^ n
| (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, transpose_pow]
| -[1+ n] := by
rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, transpose_nonsing_inv, transpose_pow]
@[simp] theorem conj_transpose_zpow [star_ring R] (A : M) : ∀ (n : ℤ), (A ^ n)ᴴ = Aᴴ ^ n
| (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, conj_transpose_pow]
| -[1+ n] := by
rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, conj_transpose_nonsing_inv, conj_transpose_pow]
end zpow
end matrix
|