Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.71 kB
/-
Copyright (c) 2022 Alexander Bentkamp. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alexander Bentkamp
-/
import analysis.inner_product_space.spectrum
import linear_algebra.matrix.hermitian
/-! # Spectral theory of hermitian matrices
This file proves the spectral theorem for matrices. The proof of the spectral theorem is based on
the spectral theorem for linear maps (`diagonalization_basis_apply_self_apply`).
## Tags
spectral theorem, diagonalization theorem
-/
namespace matrix
variables {π•œ : Type*} [is_R_or_C π•œ] [decidable_eq π•œ] {n : Type*} [fintype n] [decidable_eq n]
variables {A : matrix n n π•œ}
open_locale matrix
namespace is_hermitian
variables (hA : A.is_hermitian)
/-- The eigenvalues of a hermitian matrix, indexed by `fin (fintype.card n)` where `n` is the index
type of the matrix. -/
noncomputable def eigenvaluesβ‚€ : fin (fintype.card n) β†’ ℝ :=
@inner_product_space.is_self_adjoint.eigenvalues π•œ _ _ (pi_Lp 2 (Ξ» (_ : n), π•œ)) _ A.to_lin'
(is_hermitian_iff_is_self_adjoint.1 hA) _ (fintype.card n) finrank_euclidean_space
/-- The eigenvalues of a hermitian matrix, reusing the index `n` of the matrix entries. -/
noncomputable def eigenvalues : n β†’ ℝ :=
Ξ» i, hA.eigenvaluesβ‚€ $ (fintype.equiv_of_card_eq (fintype.card_fin _)).symm i
/-- A choice of an orthonormal basis of eigenvectors of a hermitian matrix. -/
noncomputable def eigenvector_basis : orthonormal_basis n π•œ (euclidean_space π•œ n) :=
(@inner_product_space.is_self_adjoint.eigenvector_basis π•œ _ _
(pi_Lp 2 (Ξ» (_ : n), π•œ)) _ A.to_lin' (is_hermitian_iff_is_self_adjoint.1 hA) _
(fintype.card n) finrank_euclidean_space).reindex
(fintype.equiv_of_card_eq (fintype.card_fin _))
/-- A matrix whose columns are an orthonormal basis of eigenvectors of a hermitian matrix. -/
noncomputable def eigenvector_matrix : matrix n n π•œ :=
(pi.basis_fun π•œ n).to_matrix (eigenvector_basis hA).to_basis
/-- The inverse of `eigenvector_matrix` -/
noncomputable def eigenvector_matrix_inv : matrix n n π•œ :=
(eigenvector_basis hA).to_basis.to_matrix (pi.basis_fun π•œ n)
lemma eigenvector_matrix_mul_inv :
hA.eigenvector_matrix ⬝ hA.eigenvector_matrix_inv = 1 :=
by apply basis.to_matrix_mul_to_matrix_flip
/-- *Diagonalization theorem*, *spectral theorem* for matrices; A hermitian matrix can be
diagonalized by a change of basis.
For the spectral theorem on linear maps, see `diagonalization_basis_apply_self_apply`. -/
theorem spectral_theorem :
hA.eigenvector_matrix_inv ⬝ A =
diagonal (coe ∘ hA.eigenvalues) ⬝ hA.eigenvector_matrix_inv :=
begin
rw [eigenvector_matrix_inv, basis_to_matrix_basis_fun_mul],
ext i j,
convert @inner_product_space.is_self_adjoint.diagonalization_basis_apply_self_apply π•œ _ _
(pi_Lp 2 (Ξ» (_ : n), π•œ)) _ A.to_lin' (is_hermitian_iff_is_self_adjoint.1 hA) _ (fintype.card n)
finrank_euclidean_space (euclidean_space.single j 1)
((fintype.equiv_of_card_eq (fintype.card_fin _)).symm i),
{ rw [eigenvector_basis, to_lin'_apply],
simp only [basis.to_matrix, basis.coe_to_orthonormal_basis_repr, basis.equiv_fun_apply],
simp_rw [orthonormal_basis.coe_to_basis_repr_apply, orthonormal_basis.reindex_repr,
euclidean_space.single, pi_Lp.equiv_symm_apply', mul_vec_single, mul_one],
refl },
{ simp only [diagonal_mul, (∘), eigenvalues, eigenvector_basis],
rw [basis.to_matrix_apply,
orthonormal_basis.coe_to_basis_repr_apply, orthonormal_basis.reindex_repr,
pi.basis_fun_apply, eigenvaluesβ‚€, linear_map.coe_std_basis,
euclidean_space.single, pi_Lp.equiv_symm_apply'] }
end
end is_hermitian
end matrix