/- Copyright (c) 2022 Alexander Bentkamp. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Alexander Bentkamp -/ import analysis.inner_product_space.spectrum import linear_algebra.matrix.hermitian /-! # Spectral theory of hermitian matrices This file proves the spectral theorem for matrices. The proof of the spectral theorem is based on the spectral theorem for linear maps (`diagonalization_basis_apply_self_apply`). ## Tags spectral theorem, diagonalization theorem -/ namespace matrix variables {π•œ : Type*} [is_R_or_C π•œ] [decidable_eq π•œ] {n : Type*} [fintype n] [decidable_eq n] variables {A : matrix n n π•œ} open_locale matrix namespace is_hermitian variables (hA : A.is_hermitian) /-- The eigenvalues of a hermitian matrix, indexed by `fin (fintype.card n)` where `n` is the index type of the matrix. -/ noncomputable def eigenvaluesβ‚€ : fin (fintype.card n) β†’ ℝ := @inner_product_space.is_self_adjoint.eigenvalues π•œ _ _ (pi_Lp 2 (Ξ» (_ : n), π•œ)) _ A.to_lin' (is_hermitian_iff_is_self_adjoint.1 hA) _ (fintype.card n) finrank_euclidean_space /-- The eigenvalues of a hermitian matrix, reusing the index `n` of the matrix entries. -/ noncomputable def eigenvalues : n β†’ ℝ := Ξ» i, hA.eigenvaluesβ‚€ $ (fintype.equiv_of_card_eq (fintype.card_fin _)).symm i /-- A choice of an orthonormal basis of eigenvectors of a hermitian matrix. -/ noncomputable def eigenvector_basis : orthonormal_basis n π•œ (euclidean_space π•œ n) := (@inner_product_space.is_self_adjoint.eigenvector_basis π•œ _ _ (pi_Lp 2 (Ξ» (_ : n), π•œ)) _ A.to_lin' (is_hermitian_iff_is_self_adjoint.1 hA) _ (fintype.card n) finrank_euclidean_space).reindex (fintype.equiv_of_card_eq (fintype.card_fin _)) /-- A matrix whose columns are an orthonormal basis of eigenvectors of a hermitian matrix. -/ noncomputable def eigenvector_matrix : matrix n n π•œ := (pi.basis_fun π•œ n).to_matrix (eigenvector_basis hA).to_basis /-- The inverse of `eigenvector_matrix` -/ noncomputable def eigenvector_matrix_inv : matrix n n π•œ := (eigenvector_basis hA).to_basis.to_matrix (pi.basis_fun π•œ n) lemma eigenvector_matrix_mul_inv : hA.eigenvector_matrix ⬝ hA.eigenvector_matrix_inv = 1 := by apply basis.to_matrix_mul_to_matrix_flip /-- *Diagonalization theorem*, *spectral theorem* for matrices; A hermitian matrix can be diagonalized by a change of basis. For the spectral theorem on linear maps, see `diagonalization_basis_apply_self_apply`. -/ theorem spectral_theorem : hA.eigenvector_matrix_inv ⬝ A = diagonal (coe ∘ hA.eigenvalues) ⬝ hA.eigenvector_matrix_inv := begin rw [eigenvector_matrix_inv, basis_to_matrix_basis_fun_mul], ext i j, convert @inner_product_space.is_self_adjoint.diagonalization_basis_apply_self_apply π•œ _ _ (pi_Lp 2 (Ξ» (_ : n), π•œ)) _ A.to_lin' (is_hermitian_iff_is_self_adjoint.1 hA) _ (fintype.card n) finrank_euclidean_space (euclidean_space.single j 1) ((fintype.equiv_of_card_eq (fintype.card_fin _)).symm i), { rw [eigenvector_basis, to_lin'_apply], simp only [basis.to_matrix, basis.coe_to_orthonormal_basis_repr, basis.equiv_fun_apply], simp_rw [orthonormal_basis.coe_to_basis_repr_apply, orthonormal_basis.reindex_repr, euclidean_space.single, pi_Lp.equiv_symm_apply', mul_vec_single, mul_one], refl }, { simp only [diagonal_mul, (∘), eigenvalues, eigenvector_basis], rw [basis.to_matrix_apply, orthonormal_basis.coe_to_basis_repr_apply, orthonormal_basis.reindex_repr, pi.basis_fun_apply, eigenvaluesβ‚€, linear_map.coe_std_basis, euclidean_space.single, pi_Lp.equiv_symm_apply'] } end end is_hermitian end matrix