Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 3,708 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
/-
Copyright (c) 2022 Alexander Bentkamp. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alexander Bentkamp
-/
import analysis.inner_product_space.spectrum
import linear_algebra.matrix.hermitian
/-! # Spectral theory of hermitian matrices
This file proves the spectral theorem for matrices. The proof of the spectral theorem is based on
the spectral theorem for linear maps (`diagonalization_basis_apply_self_apply`).
## Tags
spectral theorem, diagonalization theorem
-/
namespace matrix
variables {π : Type*} [is_R_or_C π] [decidable_eq π] {n : Type*} [fintype n] [decidable_eq n]
variables {A : matrix n n π}
open_locale matrix
namespace is_hermitian
variables (hA : A.is_hermitian)
/-- The eigenvalues of a hermitian matrix, indexed by `fin (fintype.card n)` where `n` is the index
type of the matrix. -/
noncomputable def eigenvaluesβ : fin (fintype.card n) β β :=
@inner_product_space.is_self_adjoint.eigenvalues π _ _ (pi_Lp 2 (Ξ» (_ : n), π)) _ A.to_lin'
(is_hermitian_iff_is_self_adjoint.1 hA) _ (fintype.card n) finrank_euclidean_space
/-- The eigenvalues of a hermitian matrix, reusing the index `n` of the matrix entries. -/
noncomputable def eigenvalues : n β β :=
Ξ» i, hA.eigenvaluesβ $ (fintype.equiv_of_card_eq (fintype.card_fin _)).symm i
/-- A choice of an orthonormal basis of eigenvectors of a hermitian matrix. -/
noncomputable def eigenvector_basis : orthonormal_basis n π (euclidean_space π n) :=
(@inner_product_space.is_self_adjoint.eigenvector_basis π _ _
(pi_Lp 2 (Ξ» (_ : n), π)) _ A.to_lin' (is_hermitian_iff_is_self_adjoint.1 hA) _
(fintype.card n) finrank_euclidean_space).reindex
(fintype.equiv_of_card_eq (fintype.card_fin _))
/-- A matrix whose columns are an orthonormal basis of eigenvectors of a hermitian matrix. -/
noncomputable def eigenvector_matrix : matrix n n π :=
(pi.basis_fun π n).to_matrix (eigenvector_basis hA).to_basis
/-- The inverse of `eigenvector_matrix` -/
noncomputable def eigenvector_matrix_inv : matrix n n π :=
(eigenvector_basis hA).to_basis.to_matrix (pi.basis_fun π n)
lemma eigenvector_matrix_mul_inv :
hA.eigenvector_matrix β¬ hA.eigenvector_matrix_inv = 1 :=
by apply basis.to_matrix_mul_to_matrix_flip
/-- *Diagonalization theorem*, *spectral theorem* for matrices; A hermitian matrix can be
diagonalized by a change of basis.
For the spectral theorem on linear maps, see `diagonalization_basis_apply_self_apply`. -/
theorem spectral_theorem :
hA.eigenvector_matrix_inv β¬ A =
diagonal (coe β hA.eigenvalues) β¬ hA.eigenvector_matrix_inv :=
begin
rw [eigenvector_matrix_inv, basis_to_matrix_basis_fun_mul],
ext i j,
convert @inner_product_space.is_self_adjoint.diagonalization_basis_apply_self_apply π _ _
(pi_Lp 2 (Ξ» (_ : n), π)) _ A.to_lin' (is_hermitian_iff_is_self_adjoint.1 hA) _ (fintype.card n)
finrank_euclidean_space (euclidean_space.single j 1)
((fintype.equiv_of_card_eq (fintype.card_fin _)).symm i),
{ rw [eigenvector_basis, to_lin'_apply],
simp only [basis.to_matrix, basis.coe_to_orthonormal_basis_repr, basis.equiv_fun_apply],
simp_rw [orthonormal_basis.coe_to_basis_repr_apply, orthonormal_basis.reindex_repr,
euclidean_space.single, pi_Lp.equiv_symm_apply', mul_vec_single, mul_one],
refl },
{ simp only [diagonal_mul, (β), eigenvalues, eigenvector_basis],
rw [basis.to_matrix_apply,
orthonormal_basis.coe_to_basis_repr_apply, orthonormal_basis.reindex_repr,
pi.basis_fun_apply, eigenvaluesβ, linear_map.coe_std_basis,
euclidean_space.single, pi_Lp.equiv_symm_apply'] }
end
end is_hermitian
end matrix
|