Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.23 kB
/-
Copyright (c) 2021 Lu-Ming Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Lu-Ming Zhang
-/
import linear_algebra.matrix.symmetric
import linear_algebra.matrix.orthogonal
import data.matrix.kronecker
/-!
# Diagonal matrices
This file contains the definition and basic results about diagonal matrices.
## Main results
- `matrix.is_diag`: a proposition that states a given square matrix `A` is diagonal.
## Tags
diag, diagonal, matrix
-/
namespace matrix
variables {α β R n m : Type*}
open function
open_locale matrix kronecker
/-- `A.is_diag` means square matrix `A` is a diagonal matrix. -/
def is_diag [has_zero α] (A : matrix n n α) : Prop := ∀ ⦃i j, ijA i j = 0
@[simp] lemma is_diag_diagonal [has_zero α] [decidable_eq n] (d : n → α) :
(diagonal d).is_diag :=
λ i j, matrix.diagonal_apply_ne _
/-- Diagonal matrices are generated by the `matrix.diagonal` of their `matrix.diag`. -/
lemma is_diag.diagonal_diag [has_zero α] [decidable_eq n] {A : matrix n n α} (h : A.is_diag) :
diagonal (diag A) = A :=
ext $ λ i j, begin
obtain rfl | hij := decidable.eq_or_ne i j,
{ rw [diagonal_apply_eq, diag] },
{ rw [diagonal_apply_ne _ hij, h hij] },
end
/-- `matrix.is_diag.diagonal_diag` as an iff. -/
lemma is_diag_iff_diagonal_diag [has_zero α] [decidable_eq n] (A : matrix n n α) :
A.is_diag ↔ diagonal (diag A) = A :=
⟨is_diag.diagonal_diag, λ hd, hd ▸ is_diag_diagonal (diag A)
/-- Every matrix indexed by a subsingleton is diagonal. -/
lemma is_diag_of_subsingleton [has_zero α] [subsingleton n] (A : matrix n n α) : A.is_diag :=
λ i j h, (h $ subsingleton.elim i j).elim
/-- Every zero matrix is diagonal. -/
@[simp] lemma is_diag_zero [has_zero α] : (0 : matrix n n α).is_diag :=
λ i j h, rfl
/-- Every identity matrix is diagonal. -/
@[simp] lemma is_diag_one [decidable_eq n] [has_zero α] [has_one α] :
(1 : matrix n n α).is_diag :=
λ i j, one_apply_ne
lemma is_diag.map [has_zero α] [has_zero β]
{A : matrix n n α} (ha : A.is_diag) {f : α → β} (hf : f 0 = 0) :
(A.map f).is_diag :=
by { intros i j h, simp [ha h, hf] }
lemma is_diag.neg [add_group α] {A : matrix n n α} (ha : A.is_diag) :
(-A).is_diag :=
by { intros i j h, simp [ha h] }
@[simp] lemma is_diag_neg_iff [add_group α] {A : matrix n n α} :
(-A).is_diag ↔ A.is_diag :=
⟨ λ ha i j h, neg_eq_zero.1 (ha h), is_diag.neg
lemma is_diag.add
[add_zero_class α] {A B : matrix n n α} (ha : A.is_diag) (hb : B.is_diag) :
(A + B).is_diag :=
by { intros i j h, simp [ha h, hb h] }
lemma is_diag.sub [add_group α]
{A B : matrix n n α} (ha : A.is_diag) (hb : B.is_diag) :
(A - B).is_diag :=
by { intros i j h, simp [ha h, hb h] }
lemma is_diag.smul [monoid R] [add_monoid α] [distrib_mul_action R α]
(k : R) {A : matrix n n α} (ha : A.is_diag) :
(k • A).is_diag :=
by { intros i j h, simp [ha h] }
@[simp] lemma is_diag_smul_one (n) [semiring α] [decidable_eq n] (k : α) :
(k • (1 : matrix n n α)).is_diag :=
is_diag_one.smul k
lemma is_diag.transpose [has_zero α] {A : matrix n n α} (ha : A.is_diag) : A.is_diag :=
λ i j h, ha h.symm
@[simp] lemma is_diag_transpose_iff [has_zero α] {A : matrix n n α} :
Aᵀ.is_diag ↔ A.is_diag :=
⟨ is_diag.transpose, is_diag.transpose ⟩
lemma is_diag.conj_transpose
[semiring α] [star_ring α] {A : matrix n n α} (ha : A.is_diag) :
Aᴴ.is_diag :=
ha.transpose.map (star_zero _)
@[simp] lemma is_diag_conj_transpose_iff [semiring α] [star_ring α] {A : matrix n n α} :
Aᴴ.is_diag ↔ A.is_diag :=
⟨ λ ha, by {convert ha.conj_transpose, simp}, is_diag.conj_transpose
lemma is_diag.minor [has_zero α]
{A : matrix n n α} (ha : A.is_diag) {f : mn} (hf : injective f) :
(A.minor f f).is_diag :=
λ i j h, ha (hf.ne h)
/-- `(A ⊗ B).is_diag` if both `A` and `B` are diagonal. -/
lemma is_diag.kronecker [mul_zero_class α]
{A : matrix m m α} {B : matrix n n α} (hA : A.is_diag) (hB : B.is_diag) :
(A ⊗ₖ B).is_diag :=
begin
rintros ⟨a, b⟩ ⟨c, dh,
simp only [prod.mk.inj_iff, ne.def, not_and_distrib] at h,
cases h with hac hbd,
{ simp [hA hac] },
{ simp [hB hbd] },
end
lemma is_diag.is_symm [has_zero α] {A : matrix n n α} (h : A.is_diag) :
A.is_symm :=
begin
ext i j,
by_cases g : i = j, { rw g },
simp [h g, h (ne.symm g)],
end
/-- The block matrix `A.from_blocks 0 0 D` is diagonal if `A` and `D` are diagonal. -/
lemma is_diag.from_blocks [has_zero α]
{A : matrix m m α} {D : matrix n n α}
(ha : A.is_diag) (hd : D.is_diag) :
(A.from_blocks 0 0 D).is_diag :=
begin
rintros (i | i) (j | j) hij,
{ exact ha (ne_of_apply_ne _ hij) },
{ refl },
{ refl },
{ exact hd (ne_of_apply_ne _ hij) },
end
/-- This is the `iff` version of `matrix.is_diag.from_blocks`. -/
lemma is_diag_from_blocks_iff [has_zero α]
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} :
(A.from_blocks B C D).is_diagA.is_diagB = 0C = 0D.is_diag :=
begin
split,
{ intros h,
refine ⟨λ i j hij, _, ext $ λ i j, _, ext $ λ i j, _, λ i j hij, _,
{ exact h (sum.inl_injective.ne hij), },
{ exact h sum.inl_ne_inr, },
{ exact h sum.inr_ne_inl, },
{ exact h (sum.inr_injective.ne hij), }, },
{ rintros ⟨ha, hb, hc, hd,
convert is_diag.from_blocks ha hd }
end
/-- A symmetric block matrix `A.from_blocks B C D` is diagonal
if `A` and `D` are diagonal and `B` is `0`. -/
lemma is_diag.from_blocks_of_is_symm [has_zero α]
{A : matrix m m α} {C : matrix n m α} {D : matrix n n α}
(h : (A.from_blocks 0 C D).is_symm) (ha : A.is_diag) (hd : D.is_diag) :
(A.from_blocks 0 C D).is_diag :=
begin
rw ←(is_symm_from_blocks_iff.1 h).2.1,
exact ha.from_blocks hd,
end
lemma mul_transpose_self_is_diag_iff_has_orthogonal_rows
[fintype n] [has_mul α] [add_comm_monoid α] {A : matrix m n α} :
(A ⬝ A).is_diagA.has_orthogonal_rows :=
iff.rfl
lemma transpose_mul_self_is_diag_iff_has_orthogonal_cols
[fintype m] [has_mul α] [add_comm_monoid α] {A : matrix m n α} :
(Aᵀ ⬝ A).is_diag ↔ A.has_orthogonal_cols :=
iff.rfl
end matrix