Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Lu-Ming Zhang. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Lu-Ming Zhang | |
-/ | |
import linear_algebra.matrix.symmetric | |
import linear_algebra.matrix.orthogonal | |
import data.matrix.kronecker | |
/-! | |
# Diagonal matrices | |
This file contains the definition and basic results about diagonal matrices. | |
## Main results | |
- `matrix.is_diag`: a proposition that states a given square matrix `A` is diagonal. | |
## Tags | |
diag, diagonal, matrix | |
-/ | |
namespace matrix | |
variables {α β R n m : Type*} | |
open function | |
open_locale matrix kronecker | |
/-- `A.is_diag` means square matrix `A` is a diagonal matrix. -/ | |
def is_diag [has_zero α] (A : matrix n n α) : Prop := ∀ ⦃i j⦄, i ≠ j → A i j = 0 | |
@[simp] lemma is_diag_diagonal [has_zero α] [decidable_eq n] (d : n → α) : | |
(diagonal d).is_diag := | |
λ i j, matrix.diagonal_apply_ne _ | |
/-- Diagonal matrices are generated by the `matrix.diagonal` of their `matrix.diag`. -/ | |
lemma is_diag.diagonal_diag [has_zero α] [decidable_eq n] {A : matrix n n α} (h : A.is_diag) : | |
diagonal (diag A) = A := | |
ext $ λ i j, begin | |
obtain rfl | hij := decidable.eq_or_ne i j, | |
{ rw [diagonal_apply_eq, diag] }, | |
{ rw [diagonal_apply_ne _ hij, h hij] }, | |
end | |
/-- `matrix.is_diag.diagonal_diag` as an iff. -/ | |
lemma is_diag_iff_diagonal_diag [has_zero α] [decidable_eq n] (A : matrix n n α) : | |
A.is_diag ↔ diagonal (diag A) = A := | |
⟨is_diag.diagonal_diag, λ hd, hd ▸ is_diag_diagonal (diag A)⟩ | |
/-- Every matrix indexed by a subsingleton is diagonal. -/ | |
lemma is_diag_of_subsingleton [has_zero α] [subsingleton n] (A : matrix n n α) : A.is_diag := | |
λ i j h, (h $ subsingleton.elim i j).elim | |
/-- Every zero matrix is diagonal. -/ | |
@[simp] lemma is_diag_zero [has_zero α] : (0 : matrix n n α).is_diag := | |
λ i j h, rfl | |
/-- Every identity matrix is diagonal. -/ | |
@[simp] lemma is_diag_one [decidable_eq n] [has_zero α] [has_one α] : | |
(1 : matrix n n α).is_diag := | |
λ i j, one_apply_ne | |
lemma is_diag.map [has_zero α] [has_zero β] | |
{A : matrix n n α} (ha : A.is_diag) {f : α → β} (hf : f 0 = 0) : | |
(A.map f).is_diag := | |
by { intros i j h, simp [ha h, hf] } | |
lemma is_diag.neg [add_group α] {A : matrix n n α} (ha : A.is_diag) : | |
(-A).is_diag := | |
by { intros i j h, simp [ha h] } | |
@[simp] lemma is_diag_neg_iff [add_group α] {A : matrix n n α} : | |
(-A).is_diag ↔ A.is_diag := | |
⟨ λ ha i j h, neg_eq_zero.1 (ha h), is_diag.neg ⟩ | |
lemma is_diag.add | |
[add_zero_class α] {A B : matrix n n α} (ha : A.is_diag) (hb : B.is_diag) : | |
(A + B).is_diag := | |
by { intros i j h, simp [ha h, hb h] } | |
lemma is_diag.sub [add_group α] | |
{A B : matrix n n α} (ha : A.is_diag) (hb : B.is_diag) : | |
(A - B).is_diag := | |
by { intros i j h, simp [ha h, hb h] } | |
lemma is_diag.smul [monoid R] [add_monoid α] [distrib_mul_action R α] | |
(k : R) {A : matrix n n α} (ha : A.is_diag) : | |
(k • A).is_diag := | |
by { intros i j h, simp [ha h] } | |
@[simp] lemma is_diag_smul_one (n) [semiring α] [decidable_eq n] (k : α) : | |
(k • (1 : matrix n n α)).is_diag := | |
is_diag_one.smul k | |
lemma is_diag.transpose [has_zero α] {A : matrix n n α} (ha : A.is_diag) : Aᵀ.is_diag := | |
λ i j h, ha h.symm | |
@[simp] lemma is_diag_transpose_iff [has_zero α] {A : matrix n n α} : | |
Aᵀ.is_diag ↔ A.is_diag := | |
⟨ is_diag.transpose, is_diag.transpose ⟩ | |
lemma is_diag.conj_transpose | |
[semiring α] [star_ring α] {A : matrix n n α} (ha : A.is_diag) : | |
Aᴴ.is_diag := | |
ha.transpose.map (star_zero _) | |
@[simp] lemma is_diag_conj_transpose_iff [semiring α] [star_ring α] {A : matrix n n α} : | |
Aᴴ.is_diag ↔ A.is_diag := | |
⟨ λ ha, by {convert ha.conj_transpose, simp}, is_diag.conj_transpose ⟩ | |
lemma is_diag.minor [has_zero α] | |
{A : matrix n n α} (ha : A.is_diag) {f : m → n} (hf : injective f) : | |
(A.minor f f).is_diag := | |
λ i j h, ha (hf.ne h) | |
/-- `(A ⊗ B).is_diag` if both `A` and `B` are diagonal. -/ | |
lemma is_diag.kronecker [mul_zero_class α] | |
{A : matrix m m α} {B : matrix n n α} (hA : A.is_diag) (hB : B.is_diag) : | |
(A ⊗ₖ B).is_diag := | |
begin | |
rintros ⟨a, b⟩ ⟨c, d⟩ h, | |
simp only [prod.mk.inj_iff, ne.def, not_and_distrib] at h, | |
cases h with hac hbd, | |
{ simp [hA hac] }, | |
{ simp [hB hbd] }, | |
end | |
lemma is_diag.is_symm [has_zero α] {A : matrix n n α} (h : A.is_diag) : | |
A.is_symm := | |
begin | |
ext i j, | |
by_cases g : i = j, { rw g }, | |
simp [h g, h (ne.symm g)], | |
end | |
/-- The block matrix `A.from_blocks 0 0 D` is diagonal if `A` and `D` are diagonal. -/ | |
lemma is_diag.from_blocks [has_zero α] | |
{A : matrix m m α} {D : matrix n n α} | |
(ha : A.is_diag) (hd : D.is_diag) : | |
(A.from_blocks 0 0 D).is_diag := | |
begin | |
rintros (i | i) (j | j) hij, | |
{ exact ha (ne_of_apply_ne _ hij) }, | |
{ refl }, | |
{ refl }, | |
{ exact hd (ne_of_apply_ne _ hij) }, | |
end | |
/-- This is the `iff` version of `matrix.is_diag.from_blocks`. -/ | |
lemma is_diag_from_blocks_iff [has_zero α] | |
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} : | |
(A.from_blocks B C D).is_diag ↔ A.is_diag ∧ B = 0 ∧ C = 0 ∧ D.is_diag := | |
begin | |
split, | |
{ intros h, | |
refine ⟨λ i j hij, _, ext $ λ i j, _, ext $ λ i j, _, λ i j hij, _⟩, | |
{ exact h (sum.inl_injective.ne hij), }, | |
{ exact h sum.inl_ne_inr, }, | |
{ exact h sum.inr_ne_inl, }, | |
{ exact h (sum.inr_injective.ne hij), }, }, | |
{ rintros ⟨ha, hb, hc, hd⟩, | |
convert is_diag.from_blocks ha hd } | |
end | |
/-- A symmetric block matrix `A.from_blocks B C D` is diagonal | |
if `A` and `D` are diagonal and `B` is `0`. -/ | |
lemma is_diag.from_blocks_of_is_symm [has_zero α] | |
{A : matrix m m α} {C : matrix n m α} {D : matrix n n α} | |
(h : (A.from_blocks 0 C D).is_symm) (ha : A.is_diag) (hd : D.is_diag) : | |
(A.from_blocks 0 C D).is_diag := | |
begin | |
rw ←(is_symm_from_blocks_iff.1 h).2.1, | |
exact ha.from_blocks hd, | |
end | |
lemma mul_transpose_self_is_diag_iff_has_orthogonal_rows | |
[fintype n] [has_mul α] [add_comm_monoid α] {A : matrix m n α} : | |
(A ⬝ Aᵀ).is_diag ↔ A.has_orthogonal_rows := | |
iff.rfl | |
lemma transpose_mul_self_is_diag_iff_has_orthogonal_cols | |
[fintype m] [has_mul α] [add_comm_monoid α] {A : matrix m n α} : | |
(Aᵀ ⬝ A).is_diag ↔ A.has_orthogonal_cols := | |
iff.rfl | |
end matrix | |