Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,228 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
/-
Copyright (c) 2021 Lu-Ming Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Lu-Ming Zhang
-/
import linear_algebra.matrix.symmetric
import linear_algebra.matrix.orthogonal
import data.matrix.kronecker
/-!
# Diagonal matrices
This file contains the definition and basic results about diagonal matrices.
## Main results
- `matrix.is_diag`: a proposition that states a given square matrix `A` is diagonal.
## Tags
diag, diagonal, matrix
-/
namespace matrix
variables {α β R n m : Type*}
open function
open_locale matrix kronecker
/-- `A.is_diag` means square matrix `A` is a diagonal matrix. -/
def is_diag [has_zero α] (A : matrix n n α) : Prop := ∀ ⦃i j⦄, i ≠ j → A i j = 0
@[simp] lemma is_diag_diagonal [has_zero α] [decidable_eq n] (d : n → α) :
(diagonal d).is_diag :=
λ i j, matrix.diagonal_apply_ne _
/-- Diagonal matrices are generated by the `matrix.diagonal` of their `matrix.diag`. -/
lemma is_diag.diagonal_diag [has_zero α] [decidable_eq n] {A : matrix n n α} (h : A.is_diag) :
diagonal (diag A) = A :=
ext $ λ i j, begin
obtain rfl | hij := decidable.eq_or_ne i j,
{ rw [diagonal_apply_eq, diag] },
{ rw [diagonal_apply_ne _ hij, h hij] },
end
/-- `matrix.is_diag.diagonal_diag` as an iff. -/
lemma is_diag_iff_diagonal_diag [has_zero α] [decidable_eq n] (A : matrix n n α) :
A.is_diag ↔ diagonal (diag A) = A :=
⟨is_diag.diagonal_diag, λ hd, hd ▸ is_diag_diagonal (diag A)⟩
/-- Every matrix indexed by a subsingleton is diagonal. -/
lemma is_diag_of_subsingleton [has_zero α] [subsingleton n] (A : matrix n n α) : A.is_diag :=
λ i j h, (h $ subsingleton.elim i j).elim
/-- Every zero matrix is diagonal. -/
@[simp] lemma is_diag_zero [has_zero α] : (0 : matrix n n α).is_diag :=
λ i j h, rfl
/-- Every identity matrix is diagonal. -/
@[simp] lemma is_diag_one [decidable_eq n] [has_zero α] [has_one α] :
(1 : matrix n n α).is_diag :=
λ i j, one_apply_ne
lemma is_diag.map [has_zero α] [has_zero β]
{A : matrix n n α} (ha : A.is_diag) {f : α → β} (hf : f 0 = 0) :
(A.map f).is_diag :=
by { intros i j h, simp [ha h, hf] }
lemma is_diag.neg [add_group α] {A : matrix n n α} (ha : A.is_diag) :
(-A).is_diag :=
by { intros i j h, simp [ha h] }
@[simp] lemma is_diag_neg_iff [add_group α] {A : matrix n n α} :
(-A).is_diag ↔ A.is_diag :=
⟨ λ ha i j h, neg_eq_zero.1 (ha h), is_diag.neg ⟩
lemma is_diag.add
[add_zero_class α] {A B : matrix n n α} (ha : A.is_diag) (hb : B.is_diag) :
(A + B).is_diag :=
by { intros i j h, simp [ha h, hb h] }
lemma is_diag.sub [add_group α]
{A B : matrix n n α} (ha : A.is_diag) (hb : B.is_diag) :
(A - B).is_diag :=
by { intros i j h, simp [ha h, hb h] }
lemma is_diag.smul [monoid R] [add_monoid α] [distrib_mul_action R α]
(k : R) {A : matrix n n α} (ha : A.is_diag) :
(k • A).is_diag :=
by { intros i j h, simp [ha h] }
@[simp] lemma is_diag_smul_one (n) [semiring α] [decidable_eq n] (k : α) :
(k • (1 : matrix n n α)).is_diag :=
is_diag_one.smul k
lemma is_diag.transpose [has_zero α] {A : matrix n n α} (ha : A.is_diag) : Aᵀ.is_diag :=
λ i j h, ha h.symm
@[simp] lemma is_diag_transpose_iff [has_zero α] {A : matrix n n α} :
Aᵀ.is_diag ↔ A.is_diag :=
⟨ is_diag.transpose, is_diag.transpose ⟩
lemma is_diag.conj_transpose
[semiring α] [star_ring α] {A : matrix n n α} (ha : A.is_diag) :
Aᴴ.is_diag :=
ha.transpose.map (star_zero _)
@[simp] lemma is_diag_conj_transpose_iff [semiring α] [star_ring α] {A : matrix n n α} :
Aᴴ.is_diag ↔ A.is_diag :=
⟨ λ ha, by {convert ha.conj_transpose, simp}, is_diag.conj_transpose ⟩
lemma is_diag.minor [has_zero α]
{A : matrix n n α} (ha : A.is_diag) {f : m → n} (hf : injective f) :
(A.minor f f).is_diag :=
λ i j h, ha (hf.ne h)
/-- `(A ⊗ B).is_diag` if both `A` and `B` are diagonal. -/
lemma is_diag.kronecker [mul_zero_class α]
{A : matrix m m α} {B : matrix n n α} (hA : A.is_diag) (hB : B.is_diag) :
(A ⊗ₖ B).is_diag :=
begin
rintros ⟨a, b⟩ ⟨c, d⟩ h,
simp only [prod.mk.inj_iff, ne.def, not_and_distrib] at h,
cases h with hac hbd,
{ simp [hA hac] },
{ simp [hB hbd] },
end
lemma is_diag.is_symm [has_zero α] {A : matrix n n α} (h : A.is_diag) :
A.is_symm :=
begin
ext i j,
by_cases g : i = j, { rw g },
simp [h g, h (ne.symm g)],
end
/-- The block matrix `A.from_blocks 0 0 D` is diagonal if `A` and `D` are diagonal. -/
lemma is_diag.from_blocks [has_zero α]
{A : matrix m m α} {D : matrix n n α}
(ha : A.is_diag) (hd : D.is_diag) :
(A.from_blocks 0 0 D).is_diag :=
begin
rintros (i | i) (j | j) hij,
{ exact ha (ne_of_apply_ne _ hij) },
{ refl },
{ refl },
{ exact hd (ne_of_apply_ne _ hij) },
end
/-- This is the `iff` version of `matrix.is_diag.from_blocks`. -/
lemma is_diag_from_blocks_iff [has_zero α]
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} :
(A.from_blocks B C D).is_diag ↔ A.is_diag ∧ B = 0 ∧ C = 0 ∧ D.is_diag :=
begin
split,
{ intros h,
refine ⟨λ i j hij, _, ext $ λ i j, _, ext $ λ i j, _, λ i j hij, _⟩,
{ exact h (sum.inl_injective.ne hij), },
{ exact h sum.inl_ne_inr, },
{ exact h sum.inr_ne_inl, },
{ exact h (sum.inr_injective.ne hij), }, },
{ rintros ⟨ha, hb, hc, hd⟩,
convert is_diag.from_blocks ha hd }
end
/-- A symmetric block matrix `A.from_blocks B C D` is diagonal
if `A` and `D` are diagonal and `B` is `0`. -/
lemma is_diag.from_blocks_of_is_symm [has_zero α]
{A : matrix m m α} {C : matrix n m α} {D : matrix n n α}
(h : (A.from_blocks 0 C D).is_symm) (ha : A.is_diag) (hd : D.is_diag) :
(A.from_blocks 0 C D).is_diag :=
begin
rw ←(is_symm_from_blocks_iff.1 h).2.1,
exact ha.from_blocks hd,
end
lemma mul_transpose_self_is_diag_iff_has_orthogonal_rows
[fintype n] [has_mul α] [add_comm_monoid α] {A : matrix m n α} :
(A ⬝ Aᵀ).is_diag ↔ A.has_orthogonal_rows :=
iff.rfl
lemma transpose_mul_self_is_diag_iff_has_orthogonal_cols
[fintype m] [has_mul α] [add_comm_monoid α] {A : matrix m n α} :
(Aᵀ ⬝ A).is_diag ↔ A.has_orthogonal_cols :=
iff.rfl
end matrix
|