/- Copyright (c) 2021 Lu-Ming Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Lu-Ming Zhang -/ import linear_algebra.matrix.symmetric import linear_algebra.matrix.orthogonal import data.matrix.kronecker /-! # Diagonal matrices This file contains the definition and basic results about diagonal matrices. ## Main results - `matrix.is_diag`: a proposition that states a given square matrix `A` is diagonal. ## Tags diag, diagonal, matrix -/ namespace matrix variables {α β R n m : Type*} open function open_locale matrix kronecker /-- `A.is_diag` means square matrix `A` is a diagonal matrix. -/ def is_diag [has_zero α] (A : matrix n n α) : Prop := ∀ ⦃i j⦄, i ≠ j → A i j = 0 @[simp] lemma is_diag_diagonal [has_zero α] [decidable_eq n] (d : n → α) : (diagonal d).is_diag := λ i j, matrix.diagonal_apply_ne _ /-- Diagonal matrices are generated by the `matrix.diagonal` of their `matrix.diag`. -/ lemma is_diag.diagonal_diag [has_zero α] [decidable_eq n] {A : matrix n n α} (h : A.is_diag) : diagonal (diag A) = A := ext $ λ i j, begin obtain rfl | hij := decidable.eq_or_ne i j, { rw [diagonal_apply_eq, diag] }, { rw [diagonal_apply_ne _ hij, h hij] }, end /-- `matrix.is_diag.diagonal_diag` as an iff. -/ lemma is_diag_iff_diagonal_diag [has_zero α] [decidable_eq n] (A : matrix n n α) : A.is_diag ↔ diagonal (diag A) = A := ⟨is_diag.diagonal_diag, λ hd, hd ▸ is_diag_diagonal (diag A)⟩ /-- Every matrix indexed by a subsingleton is diagonal. -/ lemma is_diag_of_subsingleton [has_zero α] [subsingleton n] (A : matrix n n α) : A.is_diag := λ i j h, (h $ subsingleton.elim i j).elim /-- Every zero matrix is diagonal. -/ @[simp] lemma is_diag_zero [has_zero α] : (0 : matrix n n α).is_diag := λ i j h, rfl /-- Every identity matrix is diagonal. -/ @[simp] lemma is_diag_one [decidable_eq n] [has_zero α] [has_one α] : (1 : matrix n n α).is_diag := λ i j, one_apply_ne lemma is_diag.map [has_zero α] [has_zero β] {A : matrix n n α} (ha : A.is_diag) {f : α → β} (hf : f 0 = 0) : (A.map f).is_diag := by { intros i j h, simp [ha h, hf] } lemma is_diag.neg [add_group α] {A : matrix n n α} (ha : A.is_diag) : (-A).is_diag := by { intros i j h, simp [ha h] } @[simp] lemma is_diag_neg_iff [add_group α] {A : matrix n n α} : (-A).is_diag ↔ A.is_diag := ⟨ λ ha i j h, neg_eq_zero.1 (ha h), is_diag.neg ⟩ lemma is_diag.add [add_zero_class α] {A B : matrix n n α} (ha : A.is_diag) (hb : B.is_diag) : (A + B).is_diag := by { intros i j h, simp [ha h, hb h] } lemma is_diag.sub [add_group α] {A B : matrix n n α} (ha : A.is_diag) (hb : B.is_diag) : (A - B).is_diag := by { intros i j h, simp [ha h, hb h] } lemma is_diag.smul [monoid R] [add_monoid α] [distrib_mul_action R α] (k : R) {A : matrix n n α} (ha : A.is_diag) : (k • A).is_diag := by { intros i j h, simp [ha h] } @[simp] lemma is_diag_smul_one (n) [semiring α] [decidable_eq n] (k : α) : (k • (1 : matrix n n α)).is_diag := is_diag_one.smul k lemma is_diag.transpose [has_zero α] {A : matrix n n α} (ha : A.is_diag) : Aᵀ.is_diag := λ i j h, ha h.symm @[simp] lemma is_diag_transpose_iff [has_zero α] {A : matrix n n α} : Aᵀ.is_diag ↔ A.is_diag := ⟨ is_diag.transpose, is_diag.transpose ⟩ lemma is_diag.conj_transpose [semiring α] [star_ring α] {A : matrix n n α} (ha : A.is_diag) : Aᴴ.is_diag := ha.transpose.map (star_zero _) @[simp] lemma is_diag_conj_transpose_iff [semiring α] [star_ring α] {A : matrix n n α} : Aᴴ.is_diag ↔ A.is_diag := ⟨ λ ha, by {convert ha.conj_transpose, simp}, is_diag.conj_transpose ⟩ lemma is_diag.minor [has_zero α] {A : matrix n n α} (ha : A.is_diag) {f : m → n} (hf : injective f) : (A.minor f f).is_diag := λ i j h, ha (hf.ne h) /-- `(A ⊗ B).is_diag` if both `A` and `B` are diagonal. -/ lemma is_diag.kronecker [mul_zero_class α] {A : matrix m m α} {B : matrix n n α} (hA : A.is_diag) (hB : B.is_diag) : (A ⊗ₖ B).is_diag := begin rintros ⟨a, b⟩ ⟨c, d⟩ h, simp only [prod.mk.inj_iff, ne.def, not_and_distrib] at h, cases h with hac hbd, { simp [hA hac] }, { simp [hB hbd] }, end lemma is_diag.is_symm [has_zero α] {A : matrix n n α} (h : A.is_diag) : A.is_symm := begin ext i j, by_cases g : i = j, { rw g }, simp [h g, h (ne.symm g)], end /-- The block matrix `A.from_blocks 0 0 D` is diagonal if `A` and `D` are diagonal. -/ lemma is_diag.from_blocks [has_zero α] {A : matrix m m α} {D : matrix n n α} (ha : A.is_diag) (hd : D.is_diag) : (A.from_blocks 0 0 D).is_diag := begin rintros (i | i) (j | j) hij, { exact ha (ne_of_apply_ne _ hij) }, { refl }, { refl }, { exact hd (ne_of_apply_ne _ hij) }, end /-- This is the `iff` version of `matrix.is_diag.from_blocks`. -/ lemma is_diag_from_blocks_iff [has_zero α] {A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} : (A.from_blocks B C D).is_diag ↔ A.is_diag ∧ B = 0 ∧ C = 0 ∧ D.is_diag := begin split, { intros h, refine ⟨λ i j hij, _, ext $ λ i j, _, ext $ λ i j, _, λ i j hij, _⟩, { exact h (sum.inl_injective.ne hij), }, { exact h sum.inl_ne_inr, }, { exact h sum.inr_ne_inl, }, { exact h (sum.inr_injective.ne hij), }, }, { rintros ⟨ha, hb, hc, hd⟩, convert is_diag.from_blocks ha hd } end /-- A symmetric block matrix `A.from_blocks B C D` is diagonal if `A` and `D` are diagonal and `B` is `0`. -/ lemma is_diag.from_blocks_of_is_symm [has_zero α] {A : matrix m m α} {C : matrix n m α} {D : matrix n n α} (h : (A.from_blocks 0 C D).is_symm) (ha : A.is_diag) (hd : D.is_diag) : (A.from_blocks 0 C D).is_diag := begin rw ←(is_symm_from_blocks_iff.1 h).2.1, exact ha.from_blocks hd, end lemma mul_transpose_self_is_diag_iff_has_orthogonal_rows [fintype n] [has_mul α] [add_comm_monoid α] {A : matrix m n α} : (A ⬝ Aᵀ).is_diag ↔ A.has_orthogonal_rows := iff.rfl lemma transpose_mul_self_is_diag_iff_has_orthogonal_cols [fintype m] [has_mul α] [add_comm_monoid α] {A : matrix m n α} : (Aᵀ ⬝ A).is_diag ↔ A.has_orthogonal_cols := iff.rfl end matrix