Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.83 kB
/-
Copyright (c) 2021 Lu-Ming Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Lu-Ming Zhang
-/
import linear_algebra.matrix.symmetric
/-!
# Circulant matrices
This file contains the definition and basic results about circulant matrices.
Given a vector `v : n → α` indexed by a type that is endowed with subtraction,
`matrix.circulant v` is the matrix whose `(i, j)`th entry is `v (i - j)`.
## Main results
- `matrix.circulant`: the circulant matrix generated by a given vector `v : n → α`.
- `matrix.circulant_mul`: the product of two circulant matrices `circulant v` and `circulant w` is
the circulant matrix generated by `mul_vec (circulant v) w`.
- `matrix.circulant_mul_comm`: multiplication of circulant matrices commutes when the elements do.
## Implementation notes
`matrix.fin.foo` is the `fin n` version of `matrix.foo`.
Namely, the index type of the circulant matrices in discussion is `fin n`.
## Tags
circulant, matrix
-/
variables {α β m n R : Type*}
namespace matrix
open function
open_locale matrix big_operators
/-- Given the condition `[has_sub n]` and a vector `v : n → α`,
we define `circulant v` to be the circulant matrix generated by `v` of type `matrix n n α`.
The `(i,j)`th entry is defined to be `v (i - j)`. -/
@[simp]
def circulant [has_sub n] (v : n → α) : matrix n n α
| i j := v (i - j)
lemma circulant_col_zero_eq [add_group n] (v : n → α) (i : n) : circulant v i 0 = v i :=
congr_arg v (sub_zero _)
lemma circulant_injective [add_group n] : injective (circulant : (n → α) → matrix n n α) :=
begin
intros v w h,
ext k,
rw [← circulant_col_zero_eq v, ← circulant_col_zero_eq w, h]
end
lemma fin.circulant_injective : ∀ n, injective (λ v : fin n → α, circulant v)
| 0 := dec_trivial
| (n+1) := circulant_injective
@[simp] lemma circulant_inj [add_group n] {v w : n → α} :
circulant v = circulant w ↔ v = w :=
circulant_injective.eq_iff
@[simp] lemma fin.circulant_inj {n} {v w : fin n → α} :
circulant v = circulant w ↔ v = w :=
(fin.circulant_injective n).eq_iff
lemma transpose_circulant [add_group n] (v : n → α) :
(circulant v)ᵀ = circulant (λ i, v (-i)) :=
by ext; simp
lemma conj_transpose_circulant [has_star α] [add_group n] (v : n → α) :
(circulant v)ᴴ = circulant (star (λ i, v (-i))) :=
by ext; simp
lemma fin.transpose_circulant : ∀ {n} (v : fin n → α), (circulant v)ᵀ = circulant (λ i, v (-i))
| 0 := dec_trivial
| (n+1) := transpose_circulant
lemma fin.conj_transpose_circulant [has_star α] :
∀ {n} (v : fin n → α), (circulant v)ᴴ = circulant (star (λ i, v (-i)))
| 0 := dec_trivial
| (n+1) := conj_transpose_circulant
lemma map_circulant [has_sub n] (v : n → α) (f : α → β) :
(circulant v).map f = circulant (λ i, f (v i)) :=
ext $ λ _ _, rfl
lemma circulant_neg [has_neg α] [has_sub n] (v : n → α) :
circulant (- v) = - circulant v :=
ext $ λ _ _, rfl
@[simp] lemma circulant_zero (α n) [has_zero α] [has_sub n] :
circulant 0 = (0 : matrix n n α) :=
ext $ λ _ _, rfl
lemma circulant_add [has_add α] [has_sub n] (v w : n → α) :
circulant (v + w) = circulant v + circulant w :=
ext $ λ _ _, rfl
lemma circulant_sub [has_sub α] [has_sub n] (v w : n → α) :
circulant (v - w) = circulant v - circulant w :=
ext $ λ _ _, rfl
/-- The product of two circulant matrices `circulant v` and `circulant w` is
the circulant matrix generated by `mul_vec (circulant v) w`. -/
lemma circulant_mul [semiring α] [fintype n] [add_group n] (v w : n → α) :
circulant v ⬝ circulant w = circulant (mul_vec (circulant v) w) :=
begin
ext i j,
simp only [mul_apply, mul_vec, circulant, dot_product],
refine fintype.sum_equiv (equiv.sub_right j) _ _ _,
intro x,
simp only [equiv.sub_right_apply, sub_sub_sub_cancel_right],
end
lemma fin.circulant_mul [semiring α] :
∀ {n} (v w : fin n → α), circulant v ⬝ circulant w = circulant (mul_vec (circulant v) w)
| 0 := dec_trivial
| (n+1) := circulant_mul
/-- Multiplication of circulant matrices commutes when the elements do. -/
lemma circulant_mul_comm
[comm_semigroup α] [add_comm_monoid α] [fintype n] [add_comm_group n] (v w : n → α) :
circulant v ⬝ circulant w = circulant w ⬝ circulant v :=
begin
ext i j,
simp only [mul_apply, circulant, mul_comm],
refine fintype.sum_equiv ((equiv.sub_left i).trans (equiv.add_right j)) _ _ _,
intro x,
congr' 2,
{ simp },
{ simp only [equiv.coe_add_right, function.comp_app,
equiv.coe_trans, equiv.sub_left_apply],
abel }
end
lemma fin.circulant_mul_comm [comm_semigroup α] [add_comm_monoid α] :
∀ {n} (v w : fin n → α), circulant v ⬝ circulant w = circulant w ⬝ circulant v
| 0 := dec_trivial
| (n+1) := circulant_mul_comm
/-- `k • circulant v` is another circulant matrix `circulant (k • v)`. -/
lemma circulant_smul [has_sub n] [has_smul R α] (k : R) (v : n → α) :
circulant (k • v) = k • circulant v :=
by ext; simp
@[simp] lemma circulant_single_one
(α n) [has_zero α] [has_one α] [decidable_eq n] [add_group n] :
circulant (pi.single 0 1 : n → α) = (1 : matrix n n α) :=
by { ext i j, simp [one_apply, pi.single_apply, sub_eq_zero] }
@[simp] lemma circulant_single
(n) [semiring α] [decidable_eq n] [add_group n] [fintype n] (a : α) :
circulant (pi.single 0 a : n → α) = scalar n a :=
begin
ext i j,
simp [pi.single_apply, one_apply, sub_eq_zero],
end
/-- Note we use `↑i = 0` instead of `i = 0` as `fin 0` has no `0`.
This means that we cannot state this with `pi.single` as we did with `matrix.circulant_single`. -/
lemma fin.circulant_ite (α) [has_zero α] [has_one α] :
∀ n, circulant (λ i, ite (↑i = 0) 1 0 : fin n → α) = 1
| 0 := dec_trivial
| (n+1) :=
begin
rw [←circulant_single_one],
congr' with j,
simp only [pi.single_apply, fin.ext_iff],
congr
end
/-- A circulant of `v` is symmetric iff `v` equals its reverse. -/
lemma circulant_is_symm_iff [add_group n] {v : n → α} :
(circulant v).is_symm ↔ ∀ i, v (- i) = v i :=
by rw [is_symm, transpose_circulant, circulant_inj, funext_iff]
lemma fin.circulant_is_symm_iff :
∀ {n} {v : fin n → α}, (circulant v).is_symm ↔ ∀ i, v (- i) = v i
| 0 := λ v, by simp [is_symm.ext_iff, is_empty.forall_iff]
| (n+1) := λ v, circulant_is_symm_iff
/-- If `circulant v` is symmetric, `∀ i j : I, v (- i) = v i`. -/
lemma circulant_is_symm_apply [add_group n] {v : n → α} (h : (circulant v).is_symm) (i : n) :
v (-i) = v i :=
circulant_is_symm_iff.1 h i
lemma fin.circulant_is_symm_apply {n} {v : fin n → α} (h : (circulant v).is_symm) (i : fin n) :
v (-i) = v i :=
fin.circulant_is_symm_iff.1 h i
end matrix