Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Lu-Ming Zhang. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Lu-Ming Zhang | |
-/ | |
import linear_algebra.matrix.symmetric | |
/-! | |
# Circulant matrices | |
This file contains the definition and basic results about circulant matrices. | |
Given a vector `v : n → α` indexed by a type that is endowed with subtraction, | |
`matrix.circulant v` is the matrix whose `(i, j)`th entry is `v (i - j)`. | |
## Main results | |
- `matrix.circulant`: the circulant matrix generated by a given vector `v : n → α`. | |
- `matrix.circulant_mul`: the product of two circulant matrices `circulant v` and `circulant w` is | |
the circulant matrix generated by `mul_vec (circulant v) w`. | |
- `matrix.circulant_mul_comm`: multiplication of circulant matrices commutes when the elements do. | |
## Implementation notes | |
`matrix.fin.foo` is the `fin n` version of `matrix.foo`. | |
Namely, the index type of the circulant matrices in discussion is `fin n`. | |
## Tags | |
circulant, matrix | |
-/ | |
variables {α β m n R : Type*} | |
namespace matrix | |
open function | |
open_locale matrix big_operators | |
/-- Given the condition `[has_sub n]` and a vector `v : n → α`, | |
we define `circulant v` to be the circulant matrix generated by `v` of type `matrix n n α`. | |
The `(i,j)`th entry is defined to be `v (i - j)`. -/ | |
@[simp] | |
def circulant [has_sub n] (v : n → α) : matrix n n α | |
| i j := v (i - j) | |
lemma circulant_col_zero_eq [add_group n] (v : n → α) (i : n) : circulant v i 0 = v i := | |
congr_arg v (sub_zero _) | |
lemma circulant_injective [add_group n] : injective (circulant : (n → α) → matrix n n α) := | |
begin | |
intros v w h, | |
ext k, | |
rw [← circulant_col_zero_eq v, ← circulant_col_zero_eq w, h] | |
end | |
lemma fin.circulant_injective : ∀ n, injective (λ v : fin n → α, circulant v) | |
| 0 := dec_trivial | |
| (n+1) := circulant_injective | |
@[simp] lemma circulant_inj [add_group n] {v w : n → α} : | |
circulant v = circulant w ↔ v = w := | |
circulant_injective.eq_iff | |
@[simp] lemma fin.circulant_inj {n} {v w : fin n → α} : | |
circulant v = circulant w ↔ v = w := | |
(fin.circulant_injective n).eq_iff | |
lemma transpose_circulant [add_group n] (v : n → α) : | |
(circulant v)ᵀ = circulant (λ i, v (-i)) := | |
by ext; simp | |
lemma conj_transpose_circulant [has_star α] [add_group n] (v : n → α) : | |
(circulant v)ᴴ = circulant (star (λ i, v (-i))) := | |
by ext; simp | |
lemma fin.transpose_circulant : ∀ {n} (v : fin n → α), (circulant v)ᵀ = circulant (λ i, v (-i)) | |
| 0 := dec_trivial | |
| (n+1) := transpose_circulant | |
lemma fin.conj_transpose_circulant [has_star α] : | |
∀ {n} (v : fin n → α), (circulant v)ᴴ = circulant (star (λ i, v (-i))) | |
| 0 := dec_trivial | |
| (n+1) := conj_transpose_circulant | |
lemma map_circulant [has_sub n] (v : n → α) (f : α → β) : | |
(circulant v).map f = circulant (λ i, f (v i)) := | |
ext $ λ _ _, rfl | |
lemma circulant_neg [has_neg α] [has_sub n] (v : n → α) : | |
circulant (- v) = - circulant v := | |
ext $ λ _ _, rfl | |
@[simp] lemma circulant_zero (α n) [has_zero α] [has_sub n] : | |
circulant 0 = (0 : matrix n n α) := | |
ext $ λ _ _, rfl | |
lemma circulant_add [has_add α] [has_sub n] (v w : n → α) : | |
circulant (v + w) = circulant v + circulant w := | |
ext $ λ _ _, rfl | |
lemma circulant_sub [has_sub α] [has_sub n] (v w : n → α) : | |
circulant (v - w) = circulant v - circulant w := | |
ext $ λ _ _, rfl | |
/-- The product of two circulant matrices `circulant v` and `circulant w` is | |
the circulant matrix generated by `mul_vec (circulant v) w`. -/ | |
lemma circulant_mul [semiring α] [fintype n] [add_group n] (v w : n → α) : | |
circulant v ⬝ circulant w = circulant (mul_vec (circulant v) w) := | |
begin | |
ext i j, | |
simp only [mul_apply, mul_vec, circulant, dot_product], | |
refine fintype.sum_equiv (equiv.sub_right j) _ _ _, | |
intro x, | |
simp only [equiv.sub_right_apply, sub_sub_sub_cancel_right], | |
end | |
lemma fin.circulant_mul [semiring α] : | |
∀ {n} (v w : fin n → α), circulant v ⬝ circulant w = circulant (mul_vec (circulant v) w) | |
| 0 := dec_trivial | |
| (n+1) := circulant_mul | |
/-- Multiplication of circulant matrices commutes when the elements do. -/ | |
lemma circulant_mul_comm | |
[comm_semigroup α] [add_comm_monoid α] [fintype n] [add_comm_group n] (v w : n → α) : | |
circulant v ⬝ circulant w = circulant w ⬝ circulant v := | |
begin | |
ext i j, | |
simp only [mul_apply, circulant, mul_comm], | |
refine fintype.sum_equiv ((equiv.sub_left i).trans (equiv.add_right j)) _ _ _, | |
intro x, | |
congr' 2, | |
{ simp }, | |
{ simp only [equiv.coe_add_right, function.comp_app, | |
equiv.coe_trans, equiv.sub_left_apply], | |
abel } | |
end | |
lemma fin.circulant_mul_comm [comm_semigroup α] [add_comm_monoid α] : | |
∀ {n} (v w : fin n → α), circulant v ⬝ circulant w = circulant w ⬝ circulant v | |
| 0 := dec_trivial | |
| (n+1) := circulant_mul_comm | |
/-- `k • circulant v` is another circulant matrix `circulant (k • v)`. -/ | |
lemma circulant_smul [has_sub n] [has_smul R α] (k : R) (v : n → α) : | |
circulant (k • v) = k • circulant v := | |
by ext; simp | |
@[simp] lemma circulant_single_one | |
(α n) [has_zero α] [has_one α] [decidable_eq n] [add_group n] : | |
circulant (pi.single 0 1 : n → α) = (1 : matrix n n α) := | |
by { ext i j, simp [one_apply, pi.single_apply, sub_eq_zero] } | |
@[simp] lemma circulant_single | |
(n) [semiring α] [decidable_eq n] [add_group n] [fintype n] (a : α) : | |
circulant (pi.single 0 a : n → α) = scalar n a := | |
begin | |
ext i j, | |
simp [pi.single_apply, one_apply, sub_eq_zero], | |
end | |
/-- Note we use `↑i = 0` instead of `i = 0` as `fin 0` has no `0`. | |
This means that we cannot state this with `pi.single` as we did with `matrix.circulant_single`. -/ | |
lemma fin.circulant_ite (α) [has_zero α] [has_one α] : | |
∀ n, circulant (λ i, ite (↑i = 0) 1 0 : fin n → α) = 1 | |
| 0 := dec_trivial | |
| (n+1) := | |
begin | |
rw [←circulant_single_one], | |
congr' with j, | |
simp only [pi.single_apply, fin.ext_iff], | |
congr | |
end | |
/-- A circulant of `v` is symmetric iff `v` equals its reverse. -/ | |
lemma circulant_is_symm_iff [add_group n] {v : n → α} : | |
(circulant v).is_symm ↔ ∀ i, v (- i) = v i := | |
by rw [is_symm, transpose_circulant, circulant_inj, funext_iff] | |
lemma fin.circulant_is_symm_iff : | |
∀ {n} {v : fin n → α}, (circulant v).is_symm ↔ ∀ i, v (- i) = v i | |
| 0 := λ v, by simp [is_symm.ext_iff, is_empty.forall_iff] | |
| (n+1) := λ v, circulant_is_symm_iff | |
/-- If `circulant v` is symmetric, `∀ i j : I, v (- i) = v i`. -/ | |
lemma circulant_is_symm_apply [add_group n] {v : n → α} (h : (circulant v).is_symm) (i : n) : | |
v (-i) = v i := | |
circulant_is_symm_iff.1 h i | |
lemma fin.circulant_is_symm_apply {n} {v : fin n → α} (h : (circulant v).is_symm) (i : fin n) : | |
v (-i) = v i := | |
fin.circulant_is_symm_iff.1 h i | |
end matrix | |