Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,834 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/-
Copyright (c) 2021 Lu-Ming Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Lu-Ming Zhang
-/
import linear_algebra.matrix.symmetric

/-!
# Circulant matrices

This file contains the definition and basic results about circulant matrices.
Given a vector `v : n → α` indexed by a type that is endowed with subtraction,
`matrix.circulant v` is the matrix whose `(i, j)`th entry is `v (i - j)`.

## Main results

- `matrix.circulant`: the circulant matrix generated by a given vector `v : n → α`.
- `matrix.circulant_mul`: the product of two circulant matrices `circulant v` and `circulant w` is
                          the circulant matrix generated by `mul_vec (circulant v) w`.
- `matrix.circulant_mul_comm`: multiplication of circulant matrices commutes when the elements do.

## Implementation notes

`matrix.fin.foo` is the `fin n` version of `matrix.foo`.
Namely, the index type of the circulant matrices in discussion is `fin n`.

## Tags

circulant, matrix
-/

variables {α β m n R : Type*}

namespace matrix

open function
open_locale matrix big_operators

/-- Given the condition `[has_sub n]` and a vector `v : n → α`,
    we define `circulant v` to be the circulant matrix generated by `v` of type `matrix n n α`.
    The `(i,j)`th entry is defined to be `v (i - j)`. -/
@[simp]
def circulant [has_sub n] (v : n → α) : matrix n n α
| i j := v (i - j)

lemma circulant_col_zero_eq [add_group n] (v : n → α) (i : n) : circulant v i 0 = v i :=
congr_arg v (sub_zero _)

lemma circulant_injective [add_group n] : injective (circulant : (n → α) → matrix n n α) :=
begin
  intros v w h,
  ext k,
  rw [← circulant_col_zero_eq v, ← circulant_col_zero_eq w, h]
end

lemma fin.circulant_injective : ∀ n, injective (λ v : fin n → α, circulant v)
| 0     := dec_trivial
| (n+1) := circulant_injective

@[simp] lemma circulant_inj [add_group n] {v w : n → α} :
  circulant v = circulant w ↔ v = w :=
circulant_injective.eq_iff

@[simp] lemma fin.circulant_inj {n} {v w : fin n → α} :
  circulant v = circulant w ↔ v = w :=
(fin.circulant_injective n).eq_iff

lemma transpose_circulant [add_group n] (v : n → α) :
  (circulant v)ᵀ = circulant (λ i, v (-i)) :=
by ext; simp

lemma conj_transpose_circulant [has_star α] [add_group n] (v : n → α) :
  (circulant v)ᴴ = circulant (star (λ i, v (-i))) :=
by ext; simp

lemma fin.transpose_circulant : ∀ {n} (v : fin n → α), (circulant v)ᵀ =  circulant (λ i, v (-i))
| 0     := dec_trivial
| (n+1) := transpose_circulant

lemma fin.conj_transpose_circulant [has_star α] :
  ∀ {n} (v : fin n → α), (circulant v)ᴴ = circulant (star (λ i, v (-i)))
| 0     := dec_trivial
| (n+1) := conj_transpose_circulant

lemma map_circulant [has_sub n] (v : n → α) (f : α → β) :
  (circulant v).map f = circulant (λ i, f (v i)) :=
ext $ λ _ _, rfl

lemma circulant_neg [has_neg α] [has_sub n] (v : n → α) :
  circulant (- v) = - circulant v :=
ext $ λ _ _, rfl

@[simp] lemma circulant_zero (α n) [has_zero α] [has_sub n] :
  circulant 0 = (0 : matrix n n α) :=
ext $ λ _ _, rfl

lemma circulant_add [has_add α] [has_sub n] (v w : n → α) :
  circulant (v + w) = circulant v + circulant w :=
ext $ λ _ _, rfl

lemma circulant_sub [has_sub α] [has_sub n] (v w : n → α) :
  circulant (v - w) = circulant v - circulant w :=
ext $ λ _ _, rfl

/-- The product of two circulant matrices `circulant v` and `circulant w` is
    the circulant matrix generated by `mul_vec (circulant v) w`. -/
lemma circulant_mul [semiring α] [fintype n] [add_group n] (v w : n → α) :
  circulant v ⬝ circulant w = circulant (mul_vec (circulant v) w) :=
begin
  ext i j,
  simp only [mul_apply, mul_vec, circulant, dot_product],
  refine fintype.sum_equiv (equiv.sub_right j) _ _ _,
  intro x,
  simp only [equiv.sub_right_apply, sub_sub_sub_cancel_right],
end

lemma fin.circulant_mul [semiring α] :
  ∀ {n} (v w : fin n → α), circulant v ⬝ circulant w = circulant (mul_vec (circulant v) w)
| 0     := dec_trivial
| (n+1) := circulant_mul

/-- Multiplication of circulant matrices commutes when the elements do. -/
lemma circulant_mul_comm
  [comm_semigroup α] [add_comm_monoid α] [fintype n] [add_comm_group n] (v w : n → α) :
  circulant v ⬝ circulant w = circulant w ⬝ circulant v :=
begin
  ext i j,
  simp only [mul_apply, circulant, mul_comm],
  refine fintype.sum_equiv ((equiv.sub_left i).trans (equiv.add_right j)) _ _ _,
  intro x,
  congr' 2,
  { simp },
  { simp only [equiv.coe_add_right, function.comp_app,
               equiv.coe_trans, equiv.sub_left_apply],
    abel }
end

lemma fin.circulant_mul_comm [comm_semigroup α] [add_comm_monoid α] :
  ∀ {n} (v w : fin n → α), circulant v ⬝ circulant w = circulant w ⬝ circulant v
| 0     := dec_trivial
| (n+1) := circulant_mul_comm

/-- `k • circulant v` is another circulant matrix `circulant (k • v)`. -/
lemma circulant_smul [has_sub n] [has_smul R α] (k : R) (v : n → α) :
  circulant (k • v) = k • circulant v :=
by ext; simp

@[simp] lemma circulant_single_one
  (α n) [has_zero α] [has_one α] [decidable_eq n] [add_group n] :
  circulant (pi.single 0 1 : n → α) = (1 : matrix n n α) :=
by { ext i j, simp [one_apply, pi.single_apply, sub_eq_zero] }

@[simp] lemma circulant_single
  (n) [semiring α] [decidable_eq n] [add_group n] [fintype n] (a : α) :
  circulant (pi.single 0 a : n → α) = scalar n a :=
begin
  ext i j,
  simp [pi.single_apply, one_apply, sub_eq_zero],
end

/-- Note we use `↑i = 0` instead of `i = 0` as `fin 0` has no `0`.
This means that we cannot state this with `pi.single` as we did with `matrix.circulant_single`. -/
lemma fin.circulant_ite (α) [has_zero α] [has_one α] :
  ∀ n, circulant (λ i, ite (↑i = 0) 1 0 : fin n → α) = 1
| 0     := dec_trivial
| (n+1) :=
begin
  rw [←circulant_single_one],
  congr' with j,
  simp only [pi.single_apply, fin.ext_iff],
  congr
end

/-- A circulant of `v` is symmetric iff `v` equals its reverse. -/
lemma circulant_is_symm_iff [add_group n] {v : n → α} :
  (circulant v).is_symm ↔ ∀ i, v (- i) = v i :=
by rw [is_symm, transpose_circulant, circulant_inj, funext_iff]

lemma fin.circulant_is_symm_iff :
  ∀ {n} {v : fin n → α}, (circulant v).is_symm ↔ ∀ i, v (- i) = v i
| 0     := λ v, by simp [is_symm.ext_iff, is_empty.forall_iff]
| (n+1) := λ v, circulant_is_symm_iff

/-- If `circulant v` is symmetric, `∀ i j : I, v (- i) = v i`. -/
lemma circulant_is_symm_apply [add_group n] {v : n → α} (h : (circulant v).is_symm) (i : n) :
  v (-i) = v i :=
circulant_is_symm_iff.1 h i

lemma fin.circulant_is_symm_apply {n} {v : fin n → α} (h : (circulant v).is_symm) (i : fin n) :
  v (-i) = v i :=
fin.circulant_is_symm_iff.1 h i

end matrix