Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,834 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
/-
Copyright (c) 2021 Lu-Ming Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Lu-Ming Zhang
-/
import linear_algebra.matrix.symmetric
/-!
# Circulant matrices
This file contains the definition and basic results about circulant matrices.
Given a vector `v : n → α` indexed by a type that is endowed with subtraction,
`matrix.circulant v` is the matrix whose `(i, j)`th entry is `v (i - j)`.
## Main results
- `matrix.circulant`: the circulant matrix generated by a given vector `v : n → α`.
- `matrix.circulant_mul`: the product of two circulant matrices `circulant v` and `circulant w` is
the circulant matrix generated by `mul_vec (circulant v) w`.
- `matrix.circulant_mul_comm`: multiplication of circulant matrices commutes when the elements do.
## Implementation notes
`matrix.fin.foo` is the `fin n` version of `matrix.foo`.
Namely, the index type of the circulant matrices in discussion is `fin n`.
## Tags
circulant, matrix
-/
variables {α β m n R : Type*}
namespace matrix
open function
open_locale matrix big_operators
/-- Given the condition `[has_sub n]` and a vector `v : n → α`,
we define `circulant v` to be the circulant matrix generated by `v` of type `matrix n n α`.
The `(i,j)`th entry is defined to be `v (i - j)`. -/
@[simp]
def circulant [has_sub n] (v : n → α) : matrix n n α
| i j := v (i - j)
lemma circulant_col_zero_eq [add_group n] (v : n → α) (i : n) : circulant v i 0 = v i :=
congr_arg v (sub_zero _)
lemma circulant_injective [add_group n] : injective (circulant : (n → α) → matrix n n α) :=
begin
intros v w h,
ext k,
rw [← circulant_col_zero_eq v, ← circulant_col_zero_eq w, h]
end
lemma fin.circulant_injective : ∀ n, injective (λ v : fin n → α, circulant v)
| 0 := dec_trivial
| (n+1) := circulant_injective
@[simp] lemma circulant_inj [add_group n] {v w : n → α} :
circulant v = circulant w ↔ v = w :=
circulant_injective.eq_iff
@[simp] lemma fin.circulant_inj {n} {v w : fin n → α} :
circulant v = circulant w ↔ v = w :=
(fin.circulant_injective n).eq_iff
lemma transpose_circulant [add_group n] (v : n → α) :
(circulant v)ᵀ = circulant (λ i, v (-i)) :=
by ext; simp
lemma conj_transpose_circulant [has_star α] [add_group n] (v : n → α) :
(circulant v)ᴴ = circulant (star (λ i, v (-i))) :=
by ext; simp
lemma fin.transpose_circulant : ∀ {n} (v : fin n → α), (circulant v)ᵀ = circulant (λ i, v (-i))
| 0 := dec_trivial
| (n+1) := transpose_circulant
lemma fin.conj_transpose_circulant [has_star α] :
∀ {n} (v : fin n → α), (circulant v)ᴴ = circulant (star (λ i, v (-i)))
| 0 := dec_trivial
| (n+1) := conj_transpose_circulant
lemma map_circulant [has_sub n] (v : n → α) (f : α → β) :
(circulant v).map f = circulant (λ i, f (v i)) :=
ext $ λ _ _, rfl
lemma circulant_neg [has_neg α] [has_sub n] (v : n → α) :
circulant (- v) = - circulant v :=
ext $ λ _ _, rfl
@[simp] lemma circulant_zero (α n) [has_zero α] [has_sub n] :
circulant 0 = (0 : matrix n n α) :=
ext $ λ _ _, rfl
lemma circulant_add [has_add α] [has_sub n] (v w : n → α) :
circulant (v + w) = circulant v + circulant w :=
ext $ λ _ _, rfl
lemma circulant_sub [has_sub α] [has_sub n] (v w : n → α) :
circulant (v - w) = circulant v - circulant w :=
ext $ λ _ _, rfl
/-- The product of two circulant matrices `circulant v` and `circulant w` is
the circulant matrix generated by `mul_vec (circulant v) w`. -/
lemma circulant_mul [semiring α] [fintype n] [add_group n] (v w : n → α) :
circulant v ⬝ circulant w = circulant (mul_vec (circulant v) w) :=
begin
ext i j,
simp only [mul_apply, mul_vec, circulant, dot_product],
refine fintype.sum_equiv (equiv.sub_right j) _ _ _,
intro x,
simp only [equiv.sub_right_apply, sub_sub_sub_cancel_right],
end
lemma fin.circulant_mul [semiring α] :
∀ {n} (v w : fin n → α), circulant v ⬝ circulant w = circulant (mul_vec (circulant v) w)
| 0 := dec_trivial
| (n+1) := circulant_mul
/-- Multiplication of circulant matrices commutes when the elements do. -/
lemma circulant_mul_comm
[comm_semigroup α] [add_comm_monoid α] [fintype n] [add_comm_group n] (v w : n → α) :
circulant v ⬝ circulant w = circulant w ⬝ circulant v :=
begin
ext i j,
simp only [mul_apply, circulant, mul_comm],
refine fintype.sum_equiv ((equiv.sub_left i).trans (equiv.add_right j)) _ _ _,
intro x,
congr' 2,
{ simp },
{ simp only [equiv.coe_add_right, function.comp_app,
equiv.coe_trans, equiv.sub_left_apply],
abel }
end
lemma fin.circulant_mul_comm [comm_semigroup α] [add_comm_monoid α] :
∀ {n} (v w : fin n → α), circulant v ⬝ circulant w = circulant w ⬝ circulant v
| 0 := dec_trivial
| (n+1) := circulant_mul_comm
/-- `k • circulant v` is another circulant matrix `circulant (k • v)`. -/
lemma circulant_smul [has_sub n] [has_smul R α] (k : R) (v : n → α) :
circulant (k • v) = k • circulant v :=
by ext; simp
@[simp] lemma circulant_single_one
(α n) [has_zero α] [has_one α] [decidable_eq n] [add_group n] :
circulant (pi.single 0 1 : n → α) = (1 : matrix n n α) :=
by { ext i j, simp [one_apply, pi.single_apply, sub_eq_zero] }
@[simp] lemma circulant_single
(n) [semiring α] [decidable_eq n] [add_group n] [fintype n] (a : α) :
circulant (pi.single 0 a : n → α) = scalar n a :=
begin
ext i j,
simp [pi.single_apply, one_apply, sub_eq_zero],
end
/-- Note we use `↑i = 0` instead of `i = 0` as `fin 0` has no `0`.
This means that we cannot state this with `pi.single` as we did with `matrix.circulant_single`. -/
lemma fin.circulant_ite (α) [has_zero α] [has_one α] :
∀ n, circulant (λ i, ite (↑i = 0) 1 0 : fin n → α) = 1
| 0 := dec_trivial
| (n+1) :=
begin
rw [←circulant_single_one],
congr' with j,
simp only [pi.single_apply, fin.ext_iff],
congr
end
/-- A circulant of `v` is symmetric iff `v` equals its reverse. -/
lemma circulant_is_symm_iff [add_group n] {v : n → α} :
(circulant v).is_symm ↔ ∀ i, v (- i) = v i :=
by rw [is_symm, transpose_circulant, circulant_inj, funext_iff]
lemma fin.circulant_is_symm_iff :
∀ {n} {v : fin n → α}, (circulant v).is_symm ↔ ∀ i, v (- i) = v i
| 0 := λ v, by simp [is_symm.ext_iff, is_empty.forall_iff]
| (n+1) := λ v, circulant_is_symm_iff
/-- If `circulant v` is symmetric, `∀ i j : I, v (- i) = v i`. -/
lemma circulant_is_symm_apply [add_group n] {v : n → α} (h : (circulant v).is_symm) (i : n) :
v (-i) = v i :=
circulant_is_symm_iff.1 h i
lemma fin.circulant_is_symm_apply {n} {v : fin n → α} (h : (circulant v).is_symm) (i : fin n) :
v (-i) = v i :=
fin.circulant_is_symm_iff.1 h i
end matrix
|