/- Copyright (c) 2021 Lu-Ming Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Lu-Ming Zhang -/ import linear_algebra.matrix.symmetric /-! # Circulant matrices This file contains the definition and basic results about circulant matrices. Given a vector `v : n → α` indexed by a type that is endowed with subtraction, `matrix.circulant v` is the matrix whose `(i, j)`th entry is `v (i - j)`. ## Main results - `matrix.circulant`: the circulant matrix generated by a given vector `v : n → α`. - `matrix.circulant_mul`: the product of two circulant matrices `circulant v` and `circulant w` is the circulant matrix generated by `mul_vec (circulant v) w`. - `matrix.circulant_mul_comm`: multiplication of circulant matrices commutes when the elements do. ## Implementation notes `matrix.fin.foo` is the `fin n` version of `matrix.foo`. Namely, the index type of the circulant matrices in discussion is `fin n`. ## Tags circulant, matrix -/ variables {α β m n R : Type*} namespace matrix open function open_locale matrix big_operators /-- Given the condition `[has_sub n]` and a vector `v : n → α`, we define `circulant v` to be the circulant matrix generated by `v` of type `matrix n n α`. The `(i,j)`th entry is defined to be `v (i - j)`. -/ @[simp] def circulant [has_sub n] (v : n → α) : matrix n n α | i j := v (i - j) lemma circulant_col_zero_eq [add_group n] (v : n → α) (i : n) : circulant v i 0 = v i := congr_arg v (sub_zero _) lemma circulant_injective [add_group n] : injective (circulant : (n → α) → matrix n n α) := begin intros v w h, ext k, rw [← circulant_col_zero_eq v, ← circulant_col_zero_eq w, h] end lemma fin.circulant_injective : ∀ n, injective (λ v : fin n → α, circulant v) | 0 := dec_trivial | (n+1) := circulant_injective @[simp] lemma circulant_inj [add_group n] {v w : n → α} : circulant v = circulant w ↔ v = w := circulant_injective.eq_iff @[simp] lemma fin.circulant_inj {n} {v w : fin n → α} : circulant v = circulant w ↔ v = w := (fin.circulant_injective n).eq_iff lemma transpose_circulant [add_group n] (v : n → α) : (circulant v)ᵀ = circulant (λ i, v (-i)) := by ext; simp lemma conj_transpose_circulant [has_star α] [add_group n] (v : n → α) : (circulant v)ᴴ = circulant (star (λ i, v (-i))) := by ext; simp lemma fin.transpose_circulant : ∀ {n} (v : fin n → α), (circulant v)ᵀ = circulant (λ i, v (-i)) | 0 := dec_trivial | (n+1) := transpose_circulant lemma fin.conj_transpose_circulant [has_star α] : ∀ {n} (v : fin n → α), (circulant v)ᴴ = circulant (star (λ i, v (-i))) | 0 := dec_trivial | (n+1) := conj_transpose_circulant lemma map_circulant [has_sub n] (v : n → α) (f : α → β) : (circulant v).map f = circulant (λ i, f (v i)) := ext $ λ _ _, rfl lemma circulant_neg [has_neg α] [has_sub n] (v : n → α) : circulant (- v) = - circulant v := ext $ λ _ _, rfl @[simp] lemma circulant_zero (α n) [has_zero α] [has_sub n] : circulant 0 = (0 : matrix n n α) := ext $ λ _ _, rfl lemma circulant_add [has_add α] [has_sub n] (v w : n → α) : circulant (v + w) = circulant v + circulant w := ext $ λ _ _, rfl lemma circulant_sub [has_sub α] [has_sub n] (v w : n → α) : circulant (v - w) = circulant v - circulant w := ext $ λ _ _, rfl /-- The product of two circulant matrices `circulant v` and `circulant w` is the circulant matrix generated by `mul_vec (circulant v) w`. -/ lemma circulant_mul [semiring α] [fintype n] [add_group n] (v w : n → α) : circulant v ⬝ circulant w = circulant (mul_vec (circulant v) w) := begin ext i j, simp only [mul_apply, mul_vec, circulant, dot_product], refine fintype.sum_equiv (equiv.sub_right j) _ _ _, intro x, simp only [equiv.sub_right_apply, sub_sub_sub_cancel_right], end lemma fin.circulant_mul [semiring α] : ∀ {n} (v w : fin n → α), circulant v ⬝ circulant w = circulant (mul_vec (circulant v) w) | 0 := dec_trivial | (n+1) := circulant_mul /-- Multiplication of circulant matrices commutes when the elements do. -/ lemma circulant_mul_comm [comm_semigroup α] [add_comm_monoid α] [fintype n] [add_comm_group n] (v w : n → α) : circulant v ⬝ circulant w = circulant w ⬝ circulant v := begin ext i j, simp only [mul_apply, circulant, mul_comm], refine fintype.sum_equiv ((equiv.sub_left i).trans (equiv.add_right j)) _ _ _, intro x, congr' 2, { simp }, { simp only [equiv.coe_add_right, function.comp_app, equiv.coe_trans, equiv.sub_left_apply], abel } end lemma fin.circulant_mul_comm [comm_semigroup α] [add_comm_monoid α] : ∀ {n} (v w : fin n → α), circulant v ⬝ circulant w = circulant w ⬝ circulant v | 0 := dec_trivial | (n+1) := circulant_mul_comm /-- `k • circulant v` is another circulant matrix `circulant (k • v)`. -/ lemma circulant_smul [has_sub n] [has_smul R α] (k : R) (v : n → α) : circulant (k • v) = k • circulant v := by ext; simp @[simp] lemma circulant_single_one (α n) [has_zero α] [has_one α] [decidable_eq n] [add_group n] : circulant (pi.single 0 1 : n → α) = (1 : matrix n n α) := by { ext i j, simp [one_apply, pi.single_apply, sub_eq_zero] } @[simp] lemma circulant_single (n) [semiring α] [decidable_eq n] [add_group n] [fintype n] (a : α) : circulant (pi.single 0 a : n → α) = scalar n a := begin ext i j, simp [pi.single_apply, one_apply, sub_eq_zero], end /-- Note we use `↑i = 0` instead of `i = 0` as `fin 0` has no `0`. This means that we cannot state this with `pi.single` as we did with `matrix.circulant_single`. -/ lemma fin.circulant_ite (α) [has_zero α] [has_one α] : ∀ n, circulant (λ i, ite (↑i = 0) 1 0 : fin n → α) = 1 | 0 := dec_trivial | (n+1) := begin rw [←circulant_single_one], congr' with j, simp only [pi.single_apply, fin.ext_iff], congr end /-- A circulant of `v` is symmetric iff `v` equals its reverse. -/ lemma circulant_is_symm_iff [add_group n] {v : n → α} : (circulant v).is_symm ↔ ∀ i, v (- i) = v i := by rw [is_symm, transpose_circulant, circulant_inj, funext_iff] lemma fin.circulant_is_symm_iff : ∀ {n} {v : fin n → α}, (circulant v).is_symm ↔ ∀ i, v (- i) = v i | 0 := λ v, by simp [is_symm.ext_iff, is_empty.forall_iff] | (n+1) := λ v, circulant_is_symm_iff /-- If `circulant v` is symmetric, `∀ i j : I, v (- i) = v i`. -/ lemma circulant_is_symm_apply [add_group n] {v : n → α} (h : (circulant v).is_symm) (i : n) : v (-i) = v i := circulant_is_symm_iff.1 h i lemma fin.circulant_is_symm_apply {n} {v : fin n → α} (h : (circulant v).is_symm) (i : fin n) : v (-i) = v i := fin.circulant_is_symm_iff.1 h i end matrix