Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Anne Baanen. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Anne Baanen | |
-/ | |
import linear_algebra.dimension | |
import ring_theory.principal_ideal_domain | |
import ring_theory.finiteness | |
/-! # Free modules over PID | |
A free `R`-module `M` is a module with a basis over `R`, | |
equivalently it is an `R`-module linearly equivalent to `ι →₀ R` for some `ι`. | |
This file proves a submodule of a free `R`-module of finite rank is also | |
a free `R`-module of finite rank, if `R` is a principal ideal domain (PID), | |
i.e. we have instances `[is_domain R] [is_principal_ideal_ring R]`. | |
We express "free `R`-module of finite rank" as a module `M` which has a basis | |
`b : ι → R`, where `ι` is a `fintype`. | |
We call the cardinality of `ι` the rank of `M` in this file; | |
it would be equal to `finrank R M` if `R` is a field and `M` is a vector space. | |
## Main results | |
In this section, `M` is a free and finitely generated `R`-module, and | |
`N` is a submodule of `M`. | |
- `submodule.induction_on_rank`: if `P` holds for `⊥ : submodule R M` and if | |
`P N` follows from `P N'` for all `N'` that are of lower rank, then `P` holds | |
on all submodules | |
- `submodule.exists_basis_of_pid`: if `R` is a PID, then `N : submodule R M` is | |
free and finitely generated. This is the first part of the structure theorem | |
for modules. | |
- `submodule.smith_normal_form`: if `R` is a PID, then `M` has a basis | |
`bM` and `N` has a basis `bN` such that `bN i = a i • bM i`. | |
Equivalently, a linear map `f : M →ₗ M` with `range f = N` can be written as | |
a matrix in Smith normal form, a diagonal matrix with the coefficients `a i` | |
along the diagonal. | |
## Tags | |
free module, finitely generated module, rank, structure theorem | |
-/ | |
open_locale big_operators | |
universes u v | |
section ring | |
variables {R : Type u} {M : Type v} [ring R] [add_comm_group M] [module R M] | |
variables {ι : Type*} (b : basis ι R M) | |
open submodule.is_principal submodule | |
lemma eq_bot_of_generator_maximal_map_eq_zero (b : basis ι R M) {N : submodule R M} | |
{ϕ : M →ₗ[R] R} (hϕ : ∀ (ψ : M →ₗ[R] R), N.map ϕ ≤ N.map ψ → N.map ψ = N.map ϕ) | |
[(N.map ϕ).is_principal] (hgen : generator (N.map ϕ) = 0) : N = ⊥ := | |
begin | |
rw submodule.eq_bot_iff, | |
intros x hx, | |
refine b.ext_elem (λ i, _), | |
rw (eq_bot_iff_generator_eq_zero _).mpr hgen at hϕ, | |
rw [linear_equiv.map_zero, finsupp.zero_apply], | |
exact (submodule.eq_bot_iff _).mp (hϕ ((finsupp.lapply i) ∘ₗ ↑b.repr) bot_le) _ ⟨x, hx, rfl⟩ | |
end | |
lemma eq_bot_of_generator_maximal_submodule_image_eq_zero {N O : submodule R M} (b : basis ι R O) | |
(hNO : N ≤ O) | |
{ϕ : O →ₗ[R] R} (hϕ : ∀ (ψ : O →ₗ[R] R), ϕ.submodule_image N ≤ ψ.submodule_image N → | |
ψ.submodule_image N = ϕ.submodule_image N) | |
[(ϕ.submodule_image N).is_principal] (hgen : generator (ϕ.submodule_image N) = 0) : | |
N = ⊥ := | |
begin | |
rw submodule.eq_bot_iff, | |
intros x hx, | |
refine congr_arg coe (show (⟨x, hNO hx⟩ : O) = 0, from b.ext_elem (λ i, _)), | |
rw (eq_bot_iff_generator_eq_zero _).mpr hgen at hϕ, | |
rw [linear_equiv.map_zero, finsupp.zero_apply], | |
refine (submodule.eq_bot_iff _).mp (hϕ ((finsupp.lapply i) ∘ₗ ↑b.repr) bot_le) _ _, | |
exact (linear_map.mem_submodule_image_of_le hNO).mpr ⟨x, hx, rfl⟩ | |
end | |
end ring | |
section is_domain | |
variables {ι : Type*} {R : Type*} [comm_ring R] [is_domain R] | |
variables {M : Type*} [add_comm_group M] [module R M] {b : ι → M} | |
open submodule.is_principal set submodule | |
lemma dvd_generator_iff {I : ideal R} [I.is_principal] {x : R} (hx : x ∈ I) : | |
x ∣ generator I ↔ I = ideal.span {x} := | |
begin | |
conv_rhs { rw [← span_singleton_generator I] }, | |
erw [ideal.span_singleton_eq_span_singleton, ← dvd_dvd_iff_associated, ← mem_iff_generator_dvd], | |
exact ⟨λ h, ⟨hx, h⟩, λ h, h.2⟩ | |
end | |
end is_domain | |
section principal_ideal_domain | |
open submodule.is_principal set submodule | |
variables {ι : Type*} {R : Type*} [comm_ring R] [is_domain R] [is_principal_ideal_ring R] | |
variables {M : Type*} [add_comm_group M] [module R M] {b : ι → M} | |
open submodule.is_principal | |
lemma generator_maximal_submodule_image_dvd {N O : submodule R M} (hNO : N ≤ O) | |
{ϕ : O →ₗ[R] R} (hϕ : ∀ (ψ : O →ₗ[R] R), ϕ.submodule_image N ≤ ψ.submodule_image N → | |
ψ.submodule_image N = ϕ.submodule_image N) | |
[(ϕ.submodule_image N).is_principal] | |
(y : M) (yN : y ∈ N) (ϕy_eq : ϕ ⟨y, hNO yN⟩ = generator (ϕ.submodule_image N)) | |
(ψ : O →ₗ[R] R) : generator (ϕ.submodule_image N) ∣ ψ ⟨y, hNO yN⟩ := | |
begin | |
let a : R := generator (ϕ.submodule_image N), | |
let d : R := is_principal.generator (submodule.span R {a, ψ ⟨y, hNO yN⟩}), | |
have d_dvd_left : d ∣ a := (mem_iff_generator_dvd _).mp | |
(subset_span (mem_insert _ _)), | |
have d_dvd_right : d ∣ ψ ⟨y, hNO yN⟩ := (mem_iff_generator_dvd _).mp | |
(subset_span (mem_insert_of_mem _ (mem_singleton _))), | |
refine dvd_trans _ d_dvd_right, | |
rw [dvd_generator_iff, ideal.span, | |
← span_singleton_generator (submodule.span R {a, ψ ⟨y, hNO yN⟩})], | |
obtain ⟨r₁, r₂, d_eq⟩ : ∃ r₁ r₂ : R, d = r₁ * a + r₂ * ψ ⟨y, hNO yN⟩, | |
{ obtain ⟨r₁, r₂', hr₂', hr₁⟩ := mem_span_insert.mp (is_principal.generator_mem | |
(submodule.span R {a, ψ ⟨y, hNO yN⟩})), | |
obtain ⟨r₂, rfl⟩ := mem_span_singleton.mp hr₂', | |
exact ⟨r₁, r₂, hr₁⟩ }, | |
let ψ' : O →ₗ[R] R := r₁ • ϕ + r₂ • ψ, | |
have : span R {d} ≤ ψ'.submodule_image N, | |
{ rw [span_le, singleton_subset_iff, set_like.mem_coe, linear_map.mem_submodule_image_of_le hNO], | |
refine ⟨y, yN, _⟩, | |
change r₁ * ϕ ⟨y, hNO yN⟩ + r₂ * ψ ⟨y, hNO yN⟩ = d, | |
rw [d_eq, ϕy_eq] }, | |
refine le_antisymm (this.trans (le_of_eq _)) | |
(ideal.span_singleton_le_span_singleton.mpr d_dvd_left), | |
rw span_singleton_generator, | |
refine hϕ ψ' (le_trans _ this), | |
rw [← span_singleton_generator (ϕ.submodule_image N)], | |
exact ideal.span_singleton_le_span_singleton.mpr d_dvd_left, | |
{ exact subset_span (mem_insert _ _) } | |
end | |
/-- The induction hypothesis of `submodule.basis_of_pid` and `submodule.smith_normal_form`. | |
Basically, it says: let `N ≤ M` be a pair of submodules, then we can find a pair of | |
submodules `N' ≤ M'` of strictly smaller rank, whose basis we can extend to get a basis | |
of `N` and `M`. Moreover, if the basis for `M'` is up to scalars a basis for `N'`, | |
then the basis we find for `M` is up to scalars a basis for `N`. | |
For `basis_of_pid` we only need the first half and can fix `M = ⊤`, | |
for `smith_normal_form` we need the full statement, | |
but must also feed in a basis for `M` using `basis_of_pid` to keep the induction going. | |
-/ | |
lemma submodule.basis_of_pid_aux [fintype ι] {O : Type*} [add_comm_group O] [module R O] | |
(M N : submodule R O) (b'M : basis ι R M) (N_bot : N ≠ ⊥) (N_le_M : N ≤ M) : | |
∃ (y ∈ M) (a : R) (hay : a • y ∈ N) (M' ≤ M) (N' ≤ N) (N'_le_M' : N' ≤ M') | |
(y_ortho_M' : ∀ (c : R) (z : O), z ∈ M' → c • y + z = 0 → c = 0) | |
(ay_ortho_N' : ∀ (c : R) (z : O), z ∈ N' → c • a • y + z = 0 → c = 0), | |
∀ (n') (bN' : basis (fin n') R N'), ∃ (bN : basis (fin (n' + 1)) R N), | |
∀ (m') (hn'm' : n' ≤ m') (bM' : basis (fin m') R M'), | |
∃ (hnm : (n' + 1) ≤ (m' + 1)) (bM : basis (fin (m' + 1)) R M), | |
∀ (as : fin n' → R) (h : ∀ (i : fin n'), (bN' i : O) = as i • (bM' (fin.cast_le hn'm' i) : O)), | |
∃ (as' : fin (n' + 1) → R), | |
∀ (i : fin (n' + 1)), (bN i : O) = as' i • (bM (fin.cast_le hnm i) : O) := | |
begin | |
-- Let `ϕ` be a maximal projection of `M` onto `R`, in the sense that there is | |
-- no `ψ` whose image of `N` is larger than `ϕ`'s image of `N`. | |
have : ∃ ϕ : M →ₗ[R] R, ∀ (ψ : M →ₗ[R] R), | |
ϕ.submodule_image N ≤ ψ.submodule_image N → ψ.submodule_image N = ϕ.submodule_image N, | |
{ obtain ⟨P, P_eq, P_max⟩ := set_has_maximal_iff_noetherian.mpr | |
(infer_instance : is_noetherian R R) _ | |
(show (set.range (λ ψ : M →ₗ[R] R, ψ.submodule_image N)).nonempty, | |
from ⟨_, set.mem_range.mpr ⟨0, rfl⟩⟩), | |
obtain ⟨ϕ, rfl⟩ := set.mem_range.mp P_eq, | |
exact ⟨ϕ, λ ψ hψ, P_max _ ⟨_, rfl⟩ hψ⟩ }, | |
let ϕ := this.some, | |
have ϕ_max := this.some_spec, | |
-- Since `ϕ(N)` is a `R`-submodule of the PID `R`, | |
-- it is principal and generated by some `a`. | |
let a := generator (ϕ.submodule_image N), | |
have a_mem : a ∈ ϕ.submodule_image N := generator_mem _, | |
-- If `a` is zero, then the submodule is trivial. So let's assume `a ≠ 0`, `N ≠ ⊥`. | |
by_cases a_zero : a = 0, | |
{ have := eq_bot_of_generator_maximal_submodule_image_eq_zero b'M N_le_M ϕ_max a_zero, | |
contradiction }, | |
-- We claim that `ϕ⁻¹ a = y` can be taken as basis element of `N`. | |
obtain ⟨y, yN, ϕy_eq⟩ := (linear_map.mem_submodule_image_of_le N_le_M).mp a_mem, | |
have ϕy_ne_zero : ϕ ⟨y, N_le_M yN⟩ ≠ 0 := λ h, a_zero (ϕy_eq.symm.trans h), | |
-- Write `y` as `a • y'` for some `y'`. | |
have hdvd : ∀ i, a ∣ b'M.coord i ⟨y, N_le_M yN⟩ := | |
λ i, generator_maximal_submodule_image_dvd N_le_M ϕ_max y yN ϕy_eq (b'M.coord i), | |
choose c hc using hdvd, | |
let y' : O := ∑ i, c i • b'M i, | |
have y'M : y' ∈ M := M.sum_mem (λ i _, M.smul_mem (c i) (b'M i).2), | |
have mk_y' : (⟨y', y'M⟩ : M) = ∑ i, c i • b'M i := | |
subtype.ext (show y' = M.subtype _, | |
by { simp only [linear_map.map_sum, linear_map.map_smul], refl }), | |
have a_smul_y' : a • y' = y, | |
{ refine congr_arg coe (show (a • ⟨y', y'M⟩ : M) = ⟨y, N_le_M yN⟩, from _), | |
rw [← b'M.sum_repr ⟨y, N_le_M yN⟩, mk_y', finset.smul_sum], | |
refine finset.sum_congr rfl (λ i _, _), | |
rw [← mul_smul, ← hc], refl }, | |
-- We found an `y` and an `a`! | |
refine ⟨y', y'M, a, a_smul_y'.symm ▸ yN, _⟩, | |
have ϕy'_eq : ϕ ⟨y', y'M⟩ = 1 := mul_left_cancel₀ a_zero | |
(calc a • ϕ ⟨y', y'M⟩ = ϕ ⟨a • y', _⟩ : (ϕ.map_smul a ⟨y', y'M⟩).symm | |
... = ϕ ⟨y, N_le_M yN⟩ : by simp only [a_smul_y'] | |
... = a : ϕy_eq | |
... = a * 1 : (mul_one a).symm), | |
have ϕy'_ne_zero : ϕ ⟨y', y'M⟩ ≠ 0 := by simpa only [ϕy'_eq] using one_ne_zero, | |
-- `M' := ker (ϕ : M → R)` is smaller than `M` and `N' := ker (ϕ : N → R)` is smaller than `N`. | |
let M' : submodule R O := ϕ.ker.map M.subtype, | |
let N' : submodule R O := (ϕ.comp (of_le N_le_M)).ker.map N.subtype, | |
have M'_le_M : M' ≤ M := M.map_subtype_le ϕ.ker, | |
have N'_le_M' : N' ≤ M', | |
{ intros x hx, | |
simp only [mem_map, linear_map.mem_ker] at hx ⊢, | |
obtain ⟨⟨x, xN⟩, hx, rfl⟩ := hx, | |
exact ⟨⟨x, N_le_M xN⟩, hx, rfl⟩ }, | |
have N'_le_N : N' ≤ N := N.map_subtype_le (ϕ.comp (of_le N_le_M)).ker, | |
-- So fill in those results as well. | |
refine ⟨M', M'_le_M, N', N'_le_N, N'_le_M', _⟩, | |
-- Note that `y'` is orthogonal to `M'`. | |
have y'_ortho_M' : ∀ (c : R) z ∈ M', c • y' + z = 0 → c = 0, | |
{ intros c x xM' hc, | |
obtain ⟨⟨x, xM⟩, hx', rfl⟩ := submodule.mem_map.mp xM', | |
rw linear_map.mem_ker at hx', | |
have hc' : (c • ⟨y', y'M⟩ + ⟨x, xM⟩ : M) = 0 := subtype.coe_injective hc, | |
simpa only [linear_map.map_add, linear_map.map_zero, linear_map.map_smul, smul_eq_mul, add_zero, | |
mul_eq_zero, ϕy'_ne_zero, hx', or_false] using congr_arg ϕ hc' }, | |
-- And `a • y'` is orthogonal to `N'`. | |
have ay'_ortho_N' : ∀ (c : R) z ∈ N', c • a • y' + z = 0 → c = 0, | |
{ intros c z zN' hc, | |
refine (mul_eq_zero.mp (y'_ortho_M' (a * c) z (N'_le_M' zN') _)).resolve_left a_zero, | |
rw [mul_comm, mul_smul, hc] }, | |
-- So we can extend a basis for `N'` with `y` | |
refine ⟨y'_ortho_M', ay'_ortho_N', λ n' bN', ⟨_, _⟩⟩, | |
{ refine basis.mk_fin_cons_of_le y yN bN' N'_le_N _ _, | |
{ intros c z zN' hc, | |
refine ay'_ortho_N' c z zN' _, | |
rwa ← a_smul_y' at hc }, | |
{ intros z zN, | |
obtain ⟨b, hb⟩ : _ ∣ ϕ ⟨z, N_le_M zN⟩ := generator_submodule_image_dvd_of_mem N_le_M ϕ zN, | |
refine ⟨-b, submodule.mem_map.mpr ⟨⟨_, N.sub_mem zN (N.smul_mem b yN)⟩, _, _⟩⟩, | |
{ refine linear_map.mem_ker.mpr (show ϕ (⟨z, N_le_M zN⟩ - b • ⟨y, N_le_M yN⟩) = 0, from _), | |
rw [linear_map.map_sub, linear_map.map_smul, hb, ϕy_eq, smul_eq_mul, | |
mul_comm, sub_self] }, | |
{ simp only [sub_eq_add_neg, neg_smul], refl } } }, | |
-- And extend a basis for `M'` with `y'` | |
intros m' hn'm' bM', | |
refine ⟨nat.succ_le_succ hn'm', _, _⟩, | |
{ refine basis.mk_fin_cons_of_le y' y'M bM' M'_le_M y'_ortho_M' _, | |
intros z zM, | |
refine ⟨-ϕ ⟨z, zM⟩, ⟨⟨z, zM⟩ - (ϕ ⟨z, zM⟩) • ⟨y', y'M⟩, linear_map.mem_ker.mpr _, _⟩⟩, | |
{ rw [linear_map.map_sub, linear_map.map_smul, ϕy'_eq, smul_eq_mul, mul_one, sub_self] }, | |
{ rw [linear_map.map_sub, linear_map.map_smul, sub_eq_add_neg, neg_smul], refl } }, | |
-- It remains to show the extended bases are compatible with each other. | |
intros as h, | |
refine ⟨fin.cons a as, _⟩, | |
intro i, | |
rw [basis.coe_mk_fin_cons_of_le, basis.coe_mk_fin_cons_of_le], | |
refine fin.cases _ (λ i, _) i, | |
{ simp only [fin.cons_zero, fin.cast_le_zero], | |
exact a_smul_y'.symm }, | |
{ rw fin.cast_le_succ, simp only [fin.cons_succ, coe_of_le, h i] } | |
end | |
/-- A submodule of a free `R`-module of finite rank is also a free `R`-module of finite rank, | |
if `R` is a principal ideal domain. | |
This is a `lemma` to make the induction a bit easier. To actually access the basis, | |
see `submodule.basis_of_pid`. | |
See also the stronger version `submodule.smith_normal_form`. | |
-/ | |
lemma submodule.nonempty_basis_of_pid {ι : Type*} [fintype ι] | |
(b : basis ι R M) (N : submodule R M) : | |
∃ (n : ℕ), nonempty (basis (fin n) R N) := | |
begin | |
haveI := classical.dec_eq M, | |
refine N.induction_on_rank b _ _, | |
intros N ih, | |
let b' := (b.reindex (fintype.equiv_fin ι)).map (linear_equiv.of_top _ rfl).symm, | |
by_cases N_bot : N = ⊥, | |
{ subst N_bot, exact ⟨0, ⟨basis.empty _⟩⟩ }, | |
obtain ⟨y, -, a, hay, M', -, N', N'_le_N, -, -, ay_ortho, h'⟩ := | |
submodule.basis_of_pid_aux ⊤ N b' N_bot le_top, | |
obtain ⟨n', ⟨bN'⟩⟩ := ih N' N'_le_N _ hay ay_ortho, | |
obtain ⟨bN, hbN⟩ := h' n' bN', | |
exact ⟨n' + 1, ⟨bN⟩⟩ | |
end | |
/-- A submodule of a free `R`-module of finite rank is also a free `R`-module of finite rank, | |
if `R` is a principal ideal domain. | |
See also the stronger version `submodule.smith_normal_form`. | |
-/ | |
noncomputable def submodule.basis_of_pid {ι : Type*} [fintype ι] | |
(b : basis ι R M) (N : submodule R M) : | |
Σ (n : ℕ), (basis (fin n) R N) := | |
⟨_, (N.nonempty_basis_of_pid b).some_spec.some⟩ | |
lemma submodule.basis_of_pid_bot {ι : Type*} [fintype ι] (b : basis ι R M) : | |
submodule.basis_of_pid b ⊥ = ⟨0, basis.empty _⟩ := | |
begin | |
obtain ⟨n, b'⟩ := submodule.basis_of_pid b ⊥, | |
let e : fin n ≃ fin 0 := b'.index_equiv (basis.empty _ : basis (fin 0) R (⊥ : submodule R M)), | |
obtain rfl : n = 0 := by simpa using fintype.card_eq.mpr ⟨e⟩, | |
exact sigma.eq rfl (basis.eq_of_apply_eq $ fin_zero_elim) | |
end | |
/-- A submodule inside a free `R`-submodule of finite rank is also a free `R`-module of finite rank, | |
if `R` is a principal ideal domain. | |
See also the stronger version `submodule.smith_normal_form_of_le`. | |
-/ | |
noncomputable def submodule.basis_of_pid_of_le {ι : Type*} [fintype ι] | |
{N O : submodule R M} (hNO : N ≤ O) (b : basis ι R O) : | |
Σ (n : ℕ), basis (fin n) R N := | |
let ⟨n, bN'⟩ := submodule.basis_of_pid b (N.comap O.subtype) | |
in ⟨n, bN'.map (submodule.comap_subtype_equiv_of_le hNO)⟩ | |
/-- A submodule inside the span of a linear independent family is a free `R`-module of finite rank, | |
if `R` is a principal ideal domain. -/ | |
noncomputable def submodule.basis_of_pid_of_le_span | |
{ι : Type*} [fintype ι] {b : ι → M} (hb : linear_independent R b) | |
{N : submodule R M} (le : N ≤ submodule.span R (set.range b)) : | |
Σ (n : ℕ), basis (fin n) R N := | |
submodule.basis_of_pid_of_le le (basis.span hb) | |
variable {M} | |
/-- A finite type torsion free module over a PID is free. -/ | |
noncomputable def module.free_of_finite_type_torsion_free [fintype ι] {s : ι → M} | |
(hs : span R (range s) = ⊤) [no_zero_smul_divisors R M] : | |
Σ (n : ℕ), basis (fin n) R M := | |
begin | |
classical, | |
-- We define `N` as the submodule spanned by a maximal linear independent subfamily of `s` | |
have := exists_maximal_independent R s, | |
let I : set ι := this.some, | |
obtain ⟨indepI : linear_independent R (s ∘ coe : I → M), | |
hI : ∀ i ∉ I, ∃ a : R, a ≠ 0 ∧ a • s i ∈ span R (s '' I)⟩ := this.some_spec, | |
let N := span R (range $ (s ∘ coe : I → M)), -- same as `span R (s '' I)` but more convenient | |
let sI : I → N := λ i, ⟨s i.1, subset_span (mem_range_self i)⟩, -- `s` restricted to `I` | |
let sI_basis : basis I R N, -- `s` restricted to `I` is a basis of `N` | |
from basis.span indepI, | |
-- Our first goal is to build `A ≠ 0` such that `A • M ⊆ N` | |
have exists_a : ∀ i : ι, ∃ a : R, a ≠ 0 ∧ a • s i ∈ N, | |
{ intro i, | |
by_cases hi : i ∈ I, | |
{ use [1, zero_ne_one.symm], | |
rw one_smul, | |
exact subset_span (mem_range_self (⟨i, hi⟩ : I)) }, | |
{ simpa [image_eq_range s I] using hI i hi } }, | |
choose a ha ha' using exists_a, | |
let A := ∏ i, a i, | |
have hA : A ≠ 0, | |
{ rw finset.prod_ne_zero_iff, | |
simpa using ha }, | |
-- `M ≃ A • M` because `M` is torsion free and `A ≠ 0` | |
let φ : M →ₗ[R] M := linear_map.lsmul R M A, | |
have : φ.ker = ⊥, | |
from linear_map.ker_lsmul hA, | |
let ψ : M ≃ₗ[R] φ.range := linear_equiv.of_injective φ (linear_map.ker_eq_bot.mp this), | |
have : φ.range ≤ N, -- as announced, `A • M ⊆ N` | |
{ suffices : ∀ i, φ (s i) ∈ N, | |
{ rw [linear_map.range_eq_map, ← hs, φ.map_span_le], | |
rintros _ ⟨i, rfl⟩, apply this }, | |
intro i, | |
calc (∏ j, a j) • s i = (∏ j in {i}ᶜ, a j) • a i • s i : | |
by rw [fintype.prod_eq_prod_compl_mul i, mul_smul] | |
... ∈ N : N.smul_mem _ (ha' i) }, | |
-- Since a submodule of a free `R`-module is free, we get that `A • M` is free | |
obtain ⟨n, b : basis (fin n) R φ.range⟩ := submodule.basis_of_pid_of_le this sI_basis, | |
-- hence `M` is free. | |
exact ⟨n, b.map ψ.symm⟩ | |
end | |
/-- A finite type torsion free module over a PID is free. -/ | |
noncomputable def module.free_of_finite_type_torsion_free' [module.finite R M] | |
[no_zero_smul_divisors R M] : | |
Σ (n : ℕ), basis (fin n) R M := | |
module.free_of_finite_type_torsion_free module.finite.exists_fin.some_spec.some_spec | |
section smith_normal | |
/-- A Smith normal form basis for a submodule `N` of a module `M` consists of | |
bases for `M` and `N` such that the inclusion map `N → M` can be written as a | |
(rectangular) matrix with `a` along the diagonal: in Smith normal form. -/ | |
@[nolint has_nonempty_instance] | |
structure basis.smith_normal_form (N : submodule R M) (ι : Type*) (n : ℕ) := | |
(bM : basis ι R M) | |
(bN : basis (fin n) R N) | |
(f : fin n ↪ ι) | |
(a : fin n → R) | |
(snf : ∀ i, (bN i : M) = a i • bM (f i)) | |
/-- If `M` is finite free over a PID `R`, then any submodule `N` is free | |
and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix | |
in Smith normal form. | |
See `submodule.smith_normal_form_of_le` for a version of this theorem that returns | |
a `basis.smith_normal_form`. | |
This is a strengthening of `submodule.basis_of_pid_of_le`. | |
-/ | |
theorem submodule.exists_smith_normal_form_of_le [fintype ι] | |
(b : basis ι R M) (N O : submodule R M) (N_le_O : N ≤ O) : | |
∃ (n o : ℕ) (hno : n ≤ o) (bO : basis (fin o) R O) (bN : basis (fin n) R N) (a : fin n → R), | |
∀ i, (bN i : M) = a i • bO (fin.cast_le hno i) := | |
begin | |
revert N, | |
refine induction_on_rank b _ _ O, | |
intros M ih N N_le_M, | |
obtain ⟨m, b'M⟩ := M.basis_of_pid b, | |
by_cases N_bot : N = ⊥, | |
{ subst N_bot, | |
exact ⟨0, m, nat.zero_le _, b'M, basis.empty _, fin_zero_elim, fin_zero_elim⟩ }, | |
obtain ⟨y, hy, a, hay, M', M'_le_M, N', N'_le_N, N'_le_M', y_ortho, ay_ortho, h⟩ := | |
submodule.basis_of_pid_aux M N b'M N_bot N_le_M, | |
obtain ⟨n', m', hn'm', bM', bN', as', has'⟩ := ih M' M'_le_M y hy y_ortho N' N'_le_M', | |
obtain ⟨bN, h'⟩ := h n' bN', | |
obtain ⟨hmn, bM, h''⟩ := h' m' hn'm' bM', | |
obtain ⟨as, has⟩ := h'' as' has', | |
exact ⟨_, _, hmn, bM, bN, as, has⟩ | |
end | |
/-- If `M` is finite free over a PID `R`, then any submodule `N` is free | |
and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix | |
in Smith normal form. | |
See `submodule.exists_smith_normal_form_of_le` for a version of this theorem that doesn't | |
need to map `N` into a submodule of `O`. | |
This is a strengthening of `submodule.basis_of_pid_of_le`. | |
-/ | |
noncomputable def submodule.smith_normal_form_of_le [fintype ι] | |
(b : basis ι R M) (N O : submodule R M) (N_le_O : N ≤ O) : | |
Σ (o n : ℕ), basis.smith_normal_form (N.comap O.subtype) (fin o) n := | |
begin | |
choose n o hno bO bN a snf using N.exists_smith_normal_form_of_le b O N_le_O, | |
refine ⟨o, n, bO, bN.map (comap_subtype_equiv_of_le N_le_O).symm, (fin.cast_le hno).to_embedding, | |
a, λ i, _⟩, | |
ext, | |
simp only [snf, basis.map_apply, submodule.comap_subtype_equiv_of_le_symm_apply_coe_coe, | |
submodule.coe_smul_of_tower, rel_embedding.coe_fn_to_embedding] | |
end | |
/-- If `M` is finite free over a PID `R`, then any submodule `N` is free | |
and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix | |
in Smith normal form. | |
This is a strengthening of `submodule.basis_of_pid`. | |
See also `ideal.smith_normal_form`, which moreover proves that the dimension of | |
an ideal is the same as the dimension of the whole ring. | |
-/ | |
noncomputable def submodule.smith_normal_form [fintype ι] (b : basis ι R M) (N : submodule R M) : | |
Σ (n : ℕ), basis.smith_normal_form N ι n := | |
let ⟨m, n, bM, bN, f, a, snf⟩ := N.smith_normal_form_of_le b ⊤ le_top, | |
bM' := bM.map (linear_equiv.of_top _ rfl), | |
e := bM'.index_equiv b in | |
⟨n, bM'.reindex e, bN.map (comap_subtype_equiv_of_le le_top), f.trans e.to_embedding, a, | |
λ i, by simp only [snf, basis.map_apply, linear_equiv.of_top_apply, submodule.coe_smul_of_tower, | |
submodule.comap_subtype_equiv_of_le_apply_coe, coe_coe, basis.reindex_apply, | |
equiv.to_embedding_apply, function.embedding.trans_apply, | |
equiv.symm_apply_apply]⟩ | |
/-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module, | |
then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can | |
find a basis for `S` and `I` such that the inclusion map is a square diagonal | |
matrix. | |
See `ideal.exists_smith_normal_form` for a version of this theorem that doesn't | |
need to map `I` into a submodule of `R`. | |
This is a strengthening of `submodule.basis_of_pid`. | |
-/ | |
noncomputable def ideal.smith_normal_form | |
[fintype ι] {S : Type*} [comm_ring S] [is_domain S] [algebra R S] | |
(b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) : | |
basis.smith_normal_form (I.restrict_scalars R) ι (fintype.card ι) := | |
let ⟨n, bS, bI, f, a, snf⟩ := (I.restrict_scalars R).smith_normal_form b in | |
have eq : _ := ideal.rank_eq bS hI (bI.map ((restrict_scalars_equiv R S S I).restrict_scalars _)), | |
let e : fin n ≃ fin (fintype.card ι) := fintype.equiv_of_card_eq (by rw [eq, fintype.card_fin]) in | |
⟨bS, bI.reindex e, e.symm.to_embedding.trans f, a ∘ e.symm, λ i, | |
by simp only [snf, basis.coe_reindex, function.embedding.trans_apply, equiv.to_embedding_apply]⟩ | |
/-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module, | |
then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can | |
find a basis for `S` and `I` such that the inclusion map is a square diagonal | |
matrix. | |
See also `ideal.smith_normal_form` for a version of this theorem that returns | |
a `basis.smith_normal_form`. | |
-/ | |
theorem ideal.exists_smith_normal_form | |
[fintype ι] {S : Type*} [comm_ring S] [is_domain S] [algebra R S] | |
(b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) : | |
∃ (b' : basis ι R S) (a : ι → R) (ab' : basis ι R I), | |
∀ i, (ab' i : S) = a i • b' i := | |
let ⟨bS, bI, f, a, snf⟩ := I.smith_normal_form b hI, | |
e : fin (fintype.card ι) ≃ ι := equiv.of_bijective f | |
((fintype.bijective_iff_injective_and_card f).mpr ⟨f.injective, fintype.card_fin _⟩) in | |
have fe : ∀ i, f (e.symm i) = i := e.apply_symm_apply, | |
⟨bS, a ∘ e.symm, (bI.reindex e).map ((restrict_scalars_equiv _ _ _ _).restrict_scalars R), λ i, | |
by simp only [snf, fe, basis.map_apply, linear_equiv.restrict_scalars_apply, | |
submodule.restrict_scalars_equiv_apply, basis.coe_reindex]⟩ | |
end smith_normal | |
end principal_ideal_domain | |
/-- A set of linearly independent vectors in a module `M` over a semiring `S` is also linearly | |
independent over a subring `R` of `K`. -/ | |
lemma linear_independent.restrict_scalars_algebras {R S M ι : Type*} [comm_semiring R] [semiring S] | |
[add_comm_monoid M] [algebra R S] [module R M] [module S M] [is_scalar_tower R S M] | |
(hinj : function.injective (algebra_map R S)) {v : ι → M} (li : linear_independent S v) : | |
linear_independent R v := | |
linear_independent.restrict_scalars (by rwa algebra.algebra_map_eq_smul_one' at hinj) li | |