Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
25.5 kB
/-
Copyright (c) 2020 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/
import linear_algebra.dimension
import ring_theory.principal_ideal_domain
import ring_theory.finiteness
/-! # Free modules over PID
A free `R`-module `M` is a module with a basis over `R`,
equivalently it is an `R`-module linearly equivalent to `ι →₀ R` for some `ι`.
This file proves a submodule of a free `R`-module of finite rank is also
a free `R`-module of finite rank, if `R` is a principal ideal domain (PID),
i.e. we have instances `[is_domain R] [is_principal_ideal_ring R]`.
We express "free `R`-module of finite rank" as a module `M` which has a basis
`b : ι → R`, where `ι` is a `fintype`.
We call the cardinality of `ι` the rank of `M` in this file;
it would be equal to `finrank R M` if `R` is a field and `M` is a vector space.
## Main results
In this section, `M` is a free and finitely generated `R`-module, and
`N` is a submodule of `M`.
- `submodule.induction_on_rank`: if `P` holds for `⊥ : submodule R M` and if
`P N` follows from `P N'` for all `N'` that are of lower rank, then `P` holds
on all submodules
- `submodule.exists_basis_of_pid`: if `R` is a PID, then `N : submodule R M` is
free and finitely generated. This is the first part of the structure theorem
for modules.
- `submodule.smith_normal_form`: if `R` is a PID, then `M` has a basis
`bM` and `N` has a basis `bN` such that `bN i = a i • bM i`.
Equivalently, a linear map `f : M →ₗ M` with `range f = N` can be written as
a matrix in Smith normal form, a diagonal matrix with the coefficients `a i`
along the diagonal.
## Tags
free module, finitely generated module, rank, structure theorem
-/
open_locale big_operators
universes u v
section ring
variables {R : Type u} {M : Type v} [ring R] [add_comm_group M] [module R M]
variables {ι : Type*} (b : basis ι R M)
open submodule.is_principal submodule
lemma eq_bot_of_generator_maximal_map_eq_zero (b : basis ι R M) {N : submodule R M}
{ϕ : M →ₗ[R] R} (hϕ : ∀ (ψ : M →ₗ[R] R), N.map ϕ ≤ N.map ψ → N.map ψ = N.map ϕ)
[(N.map ϕ).is_principal] (hgen : generator (N.map ϕ) = 0) : N = ⊥ :=
begin
rw submodule.eq_bot_iff,
intros x hx,
refine b.ext_elem (λ i, _),
rw (eq_bot_iff_generator_eq_zero _).mpr hgen at hϕ,
rw [linear_equiv.map_zero, finsupp.zero_apply],
exact (submodule.eq_bot_iff _).mp (hϕ ((finsupp.lapply i) ∘ₗ ↑b.repr) bot_le) _ ⟨x, hx, rfl⟩
end
lemma eq_bot_of_generator_maximal_submodule_image_eq_zero {N O : submodule R M} (b : basis ι R O)
(hNO : N ≤ O)
{ϕ : O →ₗ[R] R} (hϕ : ∀ (ψ : O →ₗ[R] R), ϕ.submodule_image N ≤ ψ.submodule_image N →
ψ.submodule_image N = ϕ.submodule_image N)
[(ϕ.submodule_image N).is_principal] (hgen : generator (ϕ.submodule_image N) = 0) :
N = ⊥ :=
begin
rw submodule.eq_bot_iff,
intros x hx,
refine congr_arg coe (show (⟨x, hNO hx⟩ : O) = 0, from b.ext_elem (λ i, _)),
rw (eq_bot_iff_generator_eq_zero _).mpr hgen at hϕ,
rw [linear_equiv.map_zero, finsupp.zero_apply],
refine (submodule.eq_bot_iff _).mp (hϕ ((finsupp.lapply i) ∘ₗ ↑b.repr) bot_le) _ _,
exact (linear_map.mem_submodule_image_of_le hNO).mpr ⟨x, hx, rfl⟩
end
end ring
section is_domain
variables {ι : Type*} {R : Type*} [comm_ring R] [is_domain R]
variables {M : Type*} [add_comm_group M] [module R M] {b : ι → M}
open submodule.is_principal set submodule
lemma dvd_generator_iff {I : ideal R} [I.is_principal] {x : R} (hx : x ∈ I) :
x ∣ generator I ↔ I = ideal.span {x} :=
begin
conv_rhs { rw [← span_singleton_generator I] },
erw [ideal.span_singleton_eq_span_singleton, ← dvd_dvd_iff_associated, ← mem_iff_generator_dvd],
exact ⟨λ h, ⟨hx, h⟩, λ h, h.2
end
end is_domain
section principal_ideal_domain
open submodule.is_principal set submodule
variables {ι : Type*} {R : Type*} [comm_ring R] [is_domain R] [is_principal_ideal_ring R]
variables {M : Type*} [add_comm_group M] [module R M] {b : ι → M}
open submodule.is_principal
lemma generator_maximal_submodule_image_dvd {N O : submodule R M} (hNO : N ≤ O)
{ϕ : O →ₗ[R] R} (hϕ : ∀ (ψ : O →ₗ[R] R), ϕ.submodule_image N ≤ ψ.submodule_image N →
ψ.submodule_image N = ϕ.submodule_image N)
[(ϕ.submodule_image N).is_principal]
(y : M) (yN : y ∈ N) (ϕy_eq : ϕ ⟨y, hNO yN⟩ = generator (ϕ.submodule_image N))
(ψ : O →ₗ[R] R) : generator (ϕ.submodule_image N) ∣ ψ ⟨y, hNO yN⟩ :=
begin
let a : R := generator (ϕ.submodule_image N),
let d : R := is_principal.generator (submodule.span R {a, ψ ⟨y, hNO yN⟩}),
have d_dvd_left : d ∣ a := (mem_iff_generator_dvd _).mp
(subset_span (mem_insert _ _)),
have d_dvd_right : d ∣ ψ ⟨y, hNO yN⟩ := (mem_iff_generator_dvd _).mp
(subset_span (mem_insert_of_mem _ (mem_singleton _))),
refine dvd_trans _ d_dvd_right,
rw [dvd_generator_iff, ideal.span,
← span_singleton_generator (submodule.span R {a, ψ ⟨y, hNO yN⟩})],
obtain ⟨r₁, r₂, d_eq⟩ : ∃ r₁ r₂ : R, d = r₁ * a + r₂ * ψ ⟨y, hNO yN⟩,
{ obtain ⟨r₁, r₂', hr₂', hr₁⟩ := mem_span_insert.mp (is_principal.generator_mem
(submodule.span R {a, ψ ⟨y, hNO yN⟩})),
obtain ⟨r₂, rfl⟩ := mem_span_singleton.mp hr₂',
exact ⟨r₁, r₂, hr₁⟩ },
let ψ' : O →ₗ[R] R := r₁ • ϕ + r₂ • ψ,
have : span R {d} ≤ ψ'.submodule_image N,
{ rw [span_le, singleton_subset_iff, set_like.mem_coe, linear_map.mem_submodule_image_of_le hNO],
refine ⟨y, yN, _⟩,
change r₁ * ϕ ⟨y, hNO yN⟩ + r₂ * ψ ⟨y, hNO yN⟩ = d,
rw [d_eq, ϕy_eq] },
refine le_antisymm (this.trans (le_of_eq _))
(ideal.span_singleton_le_span_singleton.mpr d_dvd_left),
rw span_singleton_generator,
refine hϕ ψ' (le_trans _ this),
rw [← span_singleton_generator (ϕ.submodule_image N)],
exact ideal.span_singleton_le_span_singleton.mpr d_dvd_left,
{ exact subset_span (mem_insert _ _) }
end
/-- The induction hypothesis of `submodule.basis_of_pid` and `submodule.smith_normal_form`.
Basically, it says: let `N ≤ M` be a pair of submodules, then we can find a pair of
submodules `N' ≤ M'` of strictly smaller rank, whose basis we can extend to get a basis
of `N` and `M`. Moreover, if the basis for `M'` is up to scalars a basis for `N'`,
then the basis we find for `M` is up to scalars a basis for `N`.
For `basis_of_pid` we only need the first half and can fix `M = ⊤`,
for `smith_normal_form` we need the full statement,
but must also feed in a basis for `M` using `basis_of_pid` to keep the induction going.
-/
lemma submodule.basis_of_pid_aux [fintype ι] {O : Type*} [add_comm_group O] [module R O]
(M N : submodule R O) (b'M : basis ι R M) (N_bot : N ≠ ⊥) (N_le_M : N ≤ M) :
∃ (y ∈ M) (a : R) (hay : a • y ∈ N) (M' ≤ M) (N' ≤ N) (N'_le_M' : N' ≤ M')
(y_ortho_M' : ∀ (c : R) (z : O), z ∈ M' → c • y + z = 0 → c = 0)
(ay_ortho_N' : ∀ (c : R) (z : O), z ∈ N' → c • a • y + z = 0 → c = 0),
∀ (n') (bN' : basis (fin n') R N'), ∃ (bN : basis (fin (n' + 1)) R N),
∀ (m') (hn'm' : n' ≤ m') (bM' : basis (fin m') R M'),
∃ (hnm : (n' + 1) ≤ (m' + 1)) (bM : basis (fin (m' + 1)) R M),
∀ (as : fin n' → R) (h : ∀ (i : fin n'), (bN' i : O) = as i • (bM' (fin.cast_le hn'm' i) : O)),
∃ (as' : fin (n' + 1) → R),
∀ (i : fin (n' + 1)), (bN i : O) = as' i • (bM (fin.cast_le hnm i) : O) :=
begin
-- Let `ϕ` be a maximal projection of `M` onto `R`, in the sense that there is
-- no `ψ` whose image of `N` is larger than `ϕ`'s image of `N`.
have : ∃ ϕ : M →ₗ[R] R, ∀ (ψ : M →ₗ[R] R),
ϕ.submodule_image N ≤ ψ.submodule_image N → ψ.submodule_image N = ϕ.submodule_image N,
{ obtain ⟨P, P_eq, P_max⟩ := set_has_maximal_iff_noetherian.mpr
(infer_instance : is_noetherian R R) _
(show (set.range (λ ψ : M →ₗ[R] R, ψ.submodule_image N)).nonempty,
from ⟨_, set.mem_range.mpr ⟨0, rfl⟩⟩),
obtain ⟨ϕ, rfl⟩ := set.mem_range.mp P_eq,
exact ⟨ϕ, λ ψ hψ, P_max _ ⟨_, rfl⟩ hψ⟩ },
let ϕ := this.some,
have ϕ_max := this.some_spec,
-- Since `ϕ(N)` is a `R`-submodule of the PID `R`,
-- it is principal and generated by some `a`.
let a := generator (ϕ.submodule_image N),
have a_mem : a ∈ ϕ.submodule_image N := generator_mem _,
-- If `a` is zero, then the submodule is trivial. So let's assume `a ≠ 0`, `N ≠ ⊥`.
by_cases a_zero : a = 0,
{ have := eq_bot_of_generator_maximal_submodule_image_eq_zero b'M N_le_M ϕ_max a_zero,
contradiction },
-- We claim that `ϕ⁻¹ a = y` can be taken as basis element of `N`.
obtain ⟨y, yN, ϕy_eq⟩ := (linear_map.mem_submodule_image_of_le N_le_M).mp a_mem,
have ϕy_ne_zero : ϕ ⟨y, N_le_M yN⟩ ≠ 0 := λ h, a_zero (ϕy_eq.symm.trans h),
-- Write `y` as `a • y'` for some `y'`.
have hdvd : ∀ i, a ∣ b'M.coord i ⟨y, N_le_M yN⟩ :=
λ i, generator_maximal_submodule_image_dvd N_le_M ϕ_max y yN ϕy_eq (b'M.coord i),
choose c hc using hdvd,
let y' : O := ∑ i, c i • b'M i,
have y'M : y' ∈ M := M.sum_mem (λ i _, M.smul_mem (c i) (b'M i).2),
have mk_y' : (⟨y', y'M⟩ : M) = ∑ i, c i • b'M i :=
subtype.ext (show y' = M.subtype _,
by { simp only [linear_map.map_sum, linear_map.map_smul], refl }),
have a_smul_y' : a • y' = y,
{ refine congr_arg coe (show (a • ⟨y', y'M⟩ : M) = ⟨y, N_le_M yN⟩, from _),
rw [← b'M.sum_repr ⟨y, N_le_M yN⟩, mk_y', finset.smul_sum],
refine finset.sum_congr rfl (λ i _, _),
rw [← mul_smul, ← hc], refl },
-- We found an `y` and an `a`!
refine ⟨y', y'M, a, a_smul_y'.symm ▸ yN, _⟩,
have ϕy'_eq : ϕ ⟨y', y'M⟩ = 1 := mul_left_cancel₀ a_zero
(calc a • ϕ ⟨y', y'M⟩ = ϕ ⟨a • y', _⟩ : (ϕ.map_smul a ⟨y', y'M⟩).symm
... = ϕ ⟨y, N_le_M yN⟩ : by simp only [a_smul_y']
... = a : ϕy_eq
... = a * 1 : (mul_one a).symm),
have ϕy'_ne_zero : ϕ ⟨y', y'M⟩ ≠ 0 := by simpa only [ϕy'_eq] using one_ne_zero,
-- `M' := ker (ϕ : M → R)` is smaller than `M` and `N' := ker (ϕ : N → R)` is smaller than `N`.
let M' : submodule R O := ϕ.ker.map M.subtype,
let N' : submodule R O := (ϕ.comp (of_le N_le_M)).ker.map N.subtype,
have M'_le_M : M' ≤ M := M.map_subtype_le ϕ.ker,
have N'_le_M' : N' ≤ M',
{ intros x hx,
simp only [mem_map, linear_map.mem_ker] at hx ⊢,
obtain ⟨⟨x, xN⟩, hx, rfl⟩ := hx,
exact ⟨⟨x, N_le_M xN⟩, hx, rfl⟩ },
have N'_le_N : N' ≤ N := N.map_subtype_le (ϕ.comp (of_le N_le_M)).ker,
-- So fill in those results as well.
refine ⟨M', M'_le_M, N', N'_le_N, N'_le_M', _⟩,
-- Note that `y'` is orthogonal to `M'`.
have y'_ortho_M' : ∀ (c : R) z ∈ M', c • y' + z = 0 → c = 0,
{ intros c x xM' hc,
obtain ⟨⟨x, xM⟩, hx', rfl⟩ := submodule.mem_map.mp xM',
rw linear_map.mem_ker at hx',
have hc' : (c • ⟨y', y'M⟩ + ⟨x, xM⟩ : M) = 0 := subtype.coe_injective hc,
simpa only [linear_map.map_add, linear_map.map_zero, linear_map.map_smul, smul_eq_mul, add_zero,
mul_eq_zero, ϕy'_ne_zero, hx', or_false] using congr_arg ϕ hc' },
-- And `a • y'` is orthogonal to `N'`.
have ay'_ortho_N' : ∀ (c : R) z ∈ N', c • a • y' + z = 0 → c = 0,
{ intros c z zN' hc,
refine (mul_eq_zero.mp (y'_ortho_M' (a * c) z (N'_le_M' zN') _)).resolve_left a_zero,
rw [mul_comm, mul_smul, hc] },
-- So we can extend a basis for `N'` with `y`
refine ⟨y'_ortho_M', ay'_ortho_N', λ n' bN', ⟨_, _⟩⟩,
{ refine basis.mk_fin_cons_of_le y yN bN' N'_le_N _ _,
{ intros c z zN' hc,
refine ay'_ortho_N' c z zN' _,
rwa ← a_smul_y' at hc },
{ intros z zN,
obtain ⟨b, hb⟩ : _ ∣ ϕ ⟨z, N_le_M zN⟩ := generator_submodule_image_dvd_of_mem N_le_M ϕ zN,
refine ⟨-b, submodule.mem_map.mpr ⟨⟨_, N.sub_mem zN (N.smul_mem b yN)⟩, _, _⟩⟩,
{ refine linear_map.mem_ker.mpr (show ϕ (⟨z, N_le_M zN⟩ - b • ⟨y, N_le_M yN⟩) = 0, from _),
rw [linear_map.map_sub, linear_map.map_smul, hb, ϕy_eq, smul_eq_mul,
mul_comm, sub_self] },
{ simp only [sub_eq_add_neg, neg_smul], refl } } },
-- And extend a basis for `M'` with `y'`
intros m' hn'm' bM',
refine ⟨nat.succ_le_succ hn'm', _, _⟩,
{ refine basis.mk_fin_cons_of_le y' y'M bM' M'_le_M y'_ortho_M' _,
intros z zM,
refine ⟨-ϕ ⟨z, zM⟩, ⟨⟨z, zM⟩ - (ϕ ⟨z, zM⟩) • ⟨y', y'M⟩, linear_map.mem_ker.mpr _, _⟩⟩,
{ rw [linear_map.map_sub, linear_map.map_smul, ϕy'_eq, smul_eq_mul, mul_one, sub_self] },
{ rw [linear_map.map_sub, linear_map.map_smul, sub_eq_add_neg, neg_smul], refl } },
-- It remains to show the extended bases are compatible with each other.
intros as h,
refine ⟨fin.cons a as, _⟩,
intro i,
rw [basis.coe_mk_fin_cons_of_le, basis.coe_mk_fin_cons_of_le],
refine fin.cases _ (λ i, _) i,
{ simp only [fin.cons_zero, fin.cast_le_zero],
exact a_smul_y'.symm },
{ rw fin.cast_le_succ, simp only [fin.cons_succ, coe_of_le, h i] }
end
/-- A submodule of a free `R`-module of finite rank is also a free `R`-module of finite rank,
if `R` is a principal ideal domain.
This is a `lemma` to make the induction a bit easier. To actually access the basis,
see `submodule.basis_of_pid`.
See also the stronger version `submodule.smith_normal_form`.
-/
lemma submodule.nonempty_basis_of_pid {ι : Type*} [fintype ι]
(b : basis ι R M) (N : submodule R M) :
∃ (n : ℕ), nonempty (basis (fin n) R N) :=
begin
haveI := classical.dec_eq M,
refine N.induction_on_rank b _ _,
intros N ih,
let b' := (b.reindex (fintype.equiv_fin ι)).map (linear_equiv.of_top _ rfl).symm,
by_cases N_bot : N = ⊥,
{ subst N_bot, exact ⟨0, ⟨basis.empty _⟩⟩ },
obtain ⟨y, -, a, hay, M', -, N', N'_le_N, -, -, ay_ortho, h'⟩ :=
submodule.basis_of_pid_aux ⊤ N b' N_bot le_top,
obtain ⟨n', ⟨bN'⟩⟩ := ih N' N'_le_N _ hay ay_ortho,
obtain ⟨bN, hbN⟩ := h' n' bN',
exact ⟨n' + 1, ⟨bN⟩⟩
end
/-- A submodule of a free `R`-module of finite rank is also a free `R`-module of finite rank,
if `R` is a principal ideal domain.
See also the stronger version `submodule.smith_normal_form`.
-/
noncomputable def submodule.basis_of_pid {ι : Type*} [fintype ι]
(b : basis ι R M) (N : submodule R M) :
Σ (n : ℕ), (basis (fin n) R N) :=
⟨_, (N.nonempty_basis_of_pid b).some_spec.some⟩
lemma submodule.basis_of_pid_bot {ι : Type*} [fintype ι] (b : basis ι R M) :
submodule.basis_of_pid b ⊥ = ⟨0, basis.empty _⟩ :=
begin
obtain ⟨n, b'⟩ := submodule.basis_of_pid b ⊥,
let e : fin n ≃ fin 0 := b'.index_equiv (basis.empty _ : basis (fin 0) R (⊥ : submodule R M)),
obtain rfl : n = 0 := by simpa using fintype.card_eq.mpr ⟨e⟩,
exact sigma.eq rfl (basis.eq_of_apply_eq $ fin_zero_elim)
end
/-- A submodule inside a free `R`-submodule of finite rank is also a free `R`-module of finite rank,
if `R` is a principal ideal domain.
See also the stronger version `submodule.smith_normal_form_of_le`.
-/
noncomputable def submodule.basis_of_pid_of_le {ι : Type*} [fintype ι]
{N O : submodule R M} (hNO : N ≤ O) (b : basis ι R O) :
Σ (n : ℕ), basis (fin n) R N :=
let ⟨n, bN'⟩ := submodule.basis_of_pid b (N.comap O.subtype)
in ⟨n, bN'.map (submodule.comap_subtype_equiv_of_le hNO)⟩
/-- A submodule inside the span of a linear independent family is a free `R`-module of finite rank,
if `R` is a principal ideal domain. -/
noncomputable def submodule.basis_of_pid_of_le_span
{ι : Type*} [fintype ι] {b : ι → M} (hb : linear_independent R b)
{N : submodule R M} (le : N ≤ submodule.span R (set.range b)) :
Σ (n : ℕ), basis (fin n) R N :=
submodule.basis_of_pid_of_le le (basis.span hb)
variable {M}
/-- A finite type torsion free module over a PID is free. -/
noncomputable def module.free_of_finite_type_torsion_free [fintype ι] {s : ι → M}
(hs : span R (range s) = ⊤) [no_zero_smul_divisors R M] :
Σ (n : ℕ), basis (fin n) R M :=
begin
classical,
-- We define `N` as the submodule spanned by a maximal linear independent subfamily of `s`
have := exists_maximal_independent R s,
let I : set ι := this.some,
obtain ⟨indepI : linear_independent R (s ∘ coe : I → M),
hI : ∀ i ∉ I, ∃ a : R, a ≠ 0 ∧ a • s i ∈ span R (s '' I)⟩ := this.some_spec,
let N := span R (range $ (s ∘ coe : I → M)), -- same as `span R (s '' I)` but more convenient
let sI : I → N := λ i, ⟨s i.1, subset_span (mem_range_self i)⟩, -- `s` restricted to `I`
let sI_basis : basis I R N, -- `s` restricted to `I` is a basis of `N`
from basis.span indepI,
-- Our first goal is to build `A ≠ 0` such that `A • M ⊆ N`
have exists_a : ∀ i : ι, ∃ a : R, a ≠ 0 ∧ a • s i ∈ N,
{ intro i,
by_cases hi : i ∈ I,
{ use [1, zero_ne_one.symm],
rw one_smul,
exact subset_span (mem_range_self (⟨i, hi⟩ : I)) },
{ simpa [image_eq_range s I] using hI i hi } },
choose a ha ha' using exists_a,
let A := ∏ i, a i,
have hA : A ≠ 0,
{ rw finset.prod_ne_zero_iff,
simpa using ha },
-- `M ≃ A • M` because `M` is torsion free and `A ≠ 0`
let φ : M →ₗ[R] M := linear_map.lsmul R M A,
have : φ.ker = ⊥,
from linear_map.ker_lsmul hA,
let ψ : M ≃ₗ[R] φ.range := linear_equiv.of_injective φ (linear_map.ker_eq_bot.mp this),
have : φ.range ≤ N, -- as announced, `A • M ⊆ N`
{ suffices : ∀ i, φ (s i) ∈ N,
{ rw [linear_map.range_eq_map, ← hs, φ.map_span_le],
rintros _ ⟨i, rfl⟩, apply this },
intro i,
calc (∏ j, a j) • s i = (∏ j in {i}ᶜ, a j) • a i • s i :
by rw [fintype.prod_eq_prod_compl_mul i, mul_smul]
... ∈ N : N.smul_mem _ (ha' i) },
-- Since a submodule of a free `R`-module is free, we get that `A • M` is free
obtain ⟨n, b : basis (fin n) R φ.range⟩ := submodule.basis_of_pid_of_le this sI_basis,
-- hence `M` is free.
exact ⟨n, b.map ψ.symm⟩
end
/-- A finite type torsion free module over a PID is free. -/
noncomputable def module.free_of_finite_type_torsion_free' [module.finite R M]
[no_zero_smul_divisors R M] :
Σ (n : ℕ), basis (fin n) R M :=
module.free_of_finite_type_torsion_free module.finite.exists_fin.some_spec.some_spec
section smith_normal
/-- A Smith normal form basis for a submodule `N` of a module `M` consists of
bases for `M` and `N` such that the inclusion map `N → M` can be written as a
(rectangular) matrix with `a` along the diagonal: in Smith normal form. -/
@[nolint has_nonempty_instance]
structure basis.smith_normal_form (N : submodule R M) (ι : Type*) (n : ℕ) :=
(bM : basis ι R M)
(bN : basis (fin n) R N)
(f : fin n ↪ ι)
(a : fin n → R)
(snf : ∀ i, (bN i : M) = a i • bM (f i))
/-- If `M` is finite free over a PID `R`, then any submodule `N` is free
and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix
in Smith normal form.
See `submodule.smith_normal_form_of_le` for a version of this theorem that returns
a `basis.smith_normal_form`.
This is a strengthening of `submodule.basis_of_pid_of_le`.
-/
theorem submodule.exists_smith_normal_form_of_le [fintype ι]
(b : basis ι R M) (N O : submodule R M) (N_le_O : N ≤ O) :
∃ (n o : ℕ) (hno : n ≤ o) (bO : basis (fin o) R O) (bN : basis (fin n) R N) (a : fin n → R),
∀ i, (bN i : M) = a i • bO (fin.cast_le hno i) :=
begin
revert N,
refine induction_on_rank b _ _ O,
intros M ih N N_le_M,
obtain ⟨m, b'M⟩ := M.basis_of_pid b,
by_cases N_bot : N = ⊥,
{ subst N_bot,
exact ⟨0, m, nat.zero_le _, b'M, basis.empty _, fin_zero_elim, fin_zero_elim⟩ },
obtain ⟨y, hy, a, hay, M', M'_le_M, N', N'_le_N, N'_le_M', y_ortho, ay_ortho, h⟩ :=
submodule.basis_of_pid_aux M N b'M N_bot N_le_M,
obtain ⟨n', m', hn'm', bM', bN', as', has'⟩ := ih M' M'_le_M y hy y_ortho N' N'_le_M',
obtain ⟨bN, h'⟩ := h n' bN',
obtain ⟨hmn, bM, h''⟩ := h' m' hn'm' bM',
obtain ⟨as, has⟩ := h'' as' has',
exact ⟨_, _, hmn, bM, bN, as, has⟩
end
/-- If `M` is finite free over a PID `R`, then any submodule `N` is free
and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix
in Smith normal form.
See `submodule.exists_smith_normal_form_of_le` for a version of this theorem that doesn't
need to map `N` into a submodule of `O`.
This is a strengthening of `submodule.basis_of_pid_of_le`.
-/
noncomputable def submodule.smith_normal_form_of_le [fintype ι]
(b : basis ι R M) (N O : submodule R M) (N_le_O : N ≤ O) :
Σ (o n : ℕ), basis.smith_normal_form (N.comap O.subtype) (fin o) n :=
begin
choose n o hno bO bN a snf using N.exists_smith_normal_form_of_le b O N_le_O,
refine ⟨o, n, bO, bN.map (comap_subtype_equiv_of_le N_le_O).symm, (fin.cast_le hno).to_embedding,
a, λ i, _⟩,
ext,
simp only [snf, basis.map_apply, submodule.comap_subtype_equiv_of_le_symm_apply_coe_coe,
submodule.coe_smul_of_tower, rel_embedding.coe_fn_to_embedding]
end
/-- If `M` is finite free over a PID `R`, then any submodule `N` is free
and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix
in Smith normal form.
This is a strengthening of `submodule.basis_of_pid`.
See also `ideal.smith_normal_form`, which moreover proves that the dimension of
an ideal is the same as the dimension of the whole ring.
-/
noncomputable def submodule.smith_normal_form [fintype ι] (b : basis ι R M) (N : submodule R M) :
Σ (n : ℕ), basis.smith_normal_form N ι n :=
let ⟨m, n, bM, bN, f, a, snf⟩ := N.smith_normal_form_of_le b ⊤ le_top,
bM' := bM.map (linear_equiv.of_top _ rfl),
e := bM'.index_equiv b in
⟨n, bM'.reindex e, bN.map (comap_subtype_equiv_of_le le_top), f.trans e.to_embedding, a,
λ i, by simp only [snf, basis.map_apply, linear_equiv.of_top_apply, submodule.coe_smul_of_tower,
submodule.comap_subtype_equiv_of_le_apply_coe, coe_coe, basis.reindex_apply,
equiv.to_embedding_apply, function.embedding.trans_apply,
equiv.symm_apply_apply]⟩
/-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module,
then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can
find a basis for `S` and `I` such that the inclusion map is a square diagonal
matrix.
See `ideal.exists_smith_normal_form` for a version of this theorem that doesn't
need to map `I` into a submodule of `R`.
This is a strengthening of `submodule.basis_of_pid`.
-/
noncomputable def ideal.smith_normal_form
[fintype ι] {S : Type*} [comm_ring S] [is_domain S] [algebra R S]
(b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) :
basis.smith_normal_form (I.restrict_scalars R) ι (fintype.card ι) :=
let ⟨n, bS, bI, f, a, snf⟩ := (I.restrict_scalars R).smith_normal_form b in
have eq : _ := ideal.rank_eq bS hI (bI.map ((restrict_scalars_equiv R S S I).restrict_scalars _)),
let e : fin n ≃ fin (fintype.card ι) := fintype.equiv_of_card_eq (by rw [eq, fintype.card_fin]) in
⟨bS, bI.reindex e, e.symm.to_embedding.trans f, a ∘ e.symm, λ i,
by simp only [snf, basis.coe_reindex, function.embedding.trans_apply, equiv.to_embedding_apply]⟩
/-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module,
then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can
find a basis for `S` and `I` such that the inclusion map is a square diagonal
matrix.
See also `ideal.smith_normal_form` for a version of this theorem that returns
a `basis.smith_normal_form`.
-/
theorem ideal.exists_smith_normal_form
[fintype ι] {S : Type*} [comm_ring S] [is_domain S] [algebra R S]
(b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) :
∃ (b' : basis ι R S) (a : ι → R) (ab' : basis ι R I),
∀ i, (ab' i : S) = a i • b' i :=
let ⟨bS, bI, f, a, snf⟩ := I.smith_normal_form b hI,
e : fin (fintype.card ι) ≃ ι := equiv.of_bijective f
((fintype.bijective_iff_injective_and_card f).mpr ⟨f.injective, fintype.card_fin _⟩) in
have fe : ∀ i, f (e.symm i) = i := e.apply_symm_apply,
⟨bS, a ∘ e.symm, (bI.reindex e).map ((restrict_scalars_equiv _ _ _ _).restrict_scalars R), λ i,
by simp only [snf, fe, basis.map_apply, linear_equiv.restrict_scalars_apply,
submodule.restrict_scalars_equiv_apply, basis.coe_reindex]⟩
end smith_normal
end principal_ideal_domain
/-- A set of linearly independent vectors in a module `M` over a semiring `S` is also linearly
independent over a subring `R` of `K`. -/
lemma linear_independent.restrict_scalars_algebras {R S M ι : Type*} [comm_semiring R] [semiring S]
[add_comm_monoid M] [algebra R S] [module R M] [module S M] [is_scalar_tower R S M]
(hinj : function.injective (algebra_map R S)) {v : ι → M} (li : linear_independent S v) :
linear_independent R v :=
linear_independent.restrict_scalars (by rwa algebra.algebra_map_eq_smul_one' at hinj) li