/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen -/ import linear_algebra.dimension import ring_theory.principal_ideal_domain import ring_theory.finiteness /-! # Free modules over PID A free `R`-module `M` is a module with a basis over `R`, equivalently it is an `R`-module linearly equivalent to `ι →₀ R` for some `ι`. This file proves a submodule of a free `R`-module of finite rank is also a free `R`-module of finite rank, if `R` is a principal ideal domain (PID), i.e. we have instances `[is_domain R] [is_principal_ideal_ring R]`. We express "free `R`-module of finite rank" as a module `M` which has a basis `b : ι → R`, where `ι` is a `fintype`. We call the cardinality of `ι` the rank of `M` in this file; it would be equal to `finrank R M` if `R` is a field and `M` is a vector space. ## Main results In this section, `M` is a free and finitely generated `R`-module, and `N` is a submodule of `M`. - `submodule.induction_on_rank`: if `P` holds for `⊥ : submodule R M` and if `P N` follows from `P N'` for all `N'` that are of lower rank, then `P` holds on all submodules - `submodule.exists_basis_of_pid`: if `R` is a PID, then `N : submodule R M` is free and finitely generated. This is the first part of the structure theorem for modules. - `submodule.smith_normal_form`: if `R` is a PID, then `M` has a basis `bM` and `N` has a basis `bN` such that `bN i = a i • bM i`. Equivalently, a linear map `f : M →ₗ M` with `range f = N` can be written as a matrix in Smith normal form, a diagonal matrix with the coefficients `a i` along the diagonal. ## Tags free module, finitely generated module, rank, structure theorem -/ open_locale big_operators universes u v section ring variables {R : Type u} {M : Type v} [ring R] [add_comm_group M] [module R M] variables {ι : Type*} (b : basis ι R M) open submodule.is_principal submodule lemma eq_bot_of_generator_maximal_map_eq_zero (b : basis ι R M) {N : submodule R M} {ϕ : M →ₗ[R] R} (hϕ : ∀ (ψ : M →ₗ[R] R), N.map ϕ ≤ N.map ψ → N.map ψ = N.map ϕ) [(N.map ϕ).is_principal] (hgen : generator (N.map ϕ) = 0) : N = ⊥ := begin rw submodule.eq_bot_iff, intros x hx, refine b.ext_elem (λ i, _), rw (eq_bot_iff_generator_eq_zero _).mpr hgen at hϕ, rw [linear_equiv.map_zero, finsupp.zero_apply], exact (submodule.eq_bot_iff _).mp (hϕ ((finsupp.lapply i) ∘ₗ ↑b.repr) bot_le) _ ⟨x, hx, rfl⟩ end lemma eq_bot_of_generator_maximal_submodule_image_eq_zero {N O : submodule R M} (b : basis ι R O) (hNO : N ≤ O) {ϕ : O →ₗ[R] R} (hϕ : ∀ (ψ : O →ₗ[R] R), ϕ.submodule_image N ≤ ψ.submodule_image N → ψ.submodule_image N = ϕ.submodule_image N) [(ϕ.submodule_image N).is_principal] (hgen : generator (ϕ.submodule_image N) = 0) : N = ⊥ := begin rw submodule.eq_bot_iff, intros x hx, refine congr_arg coe (show (⟨x, hNO hx⟩ : O) = 0, from b.ext_elem (λ i, _)), rw (eq_bot_iff_generator_eq_zero _).mpr hgen at hϕ, rw [linear_equiv.map_zero, finsupp.zero_apply], refine (submodule.eq_bot_iff _).mp (hϕ ((finsupp.lapply i) ∘ₗ ↑b.repr) bot_le) _ _, exact (linear_map.mem_submodule_image_of_le hNO).mpr ⟨x, hx, rfl⟩ end end ring section is_domain variables {ι : Type*} {R : Type*} [comm_ring R] [is_domain R] variables {M : Type*} [add_comm_group M] [module R M] {b : ι → M} open submodule.is_principal set submodule lemma dvd_generator_iff {I : ideal R} [I.is_principal] {x : R} (hx : x ∈ I) : x ∣ generator I ↔ I = ideal.span {x} := begin conv_rhs { rw [← span_singleton_generator I] }, erw [ideal.span_singleton_eq_span_singleton, ← dvd_dvd_iff_associated, ← mem_iff_generator_dvd], exact ⟨λ h, ⟨hx, h⟩, λ h, h.2⟩ end end is_domain section principal_ideal_domain open submodule.is_principal set submodule variables {ι : Type*} {R : Type*} [comm_ring R] [is_domain R] [is_principal_ideal_ring R] variables {M : Type*} [add_comm_group M] [module R M] {b : ι → M} open submodule.is_principal lemma generator_maximal_submodule_image_dvd {N O : submodule R M} (hNO : N ≤ O) {ϕ : O →ₗ[R] R} (hϕ : ∀ (ψ : O →ₗ[R] R), ϕ.submodule_image N ≤ ψ.submodule_image N → ψ.submodule_image N = ϕ.submodule_image N) [(ϕ.submodule_image N).is_principal] (y : M) (yN : y ∈ N) (ϕy_eq : ϕ ⟨y, hNO yN⟩ = generator (ϕ.submodule_image N)) (ψ : O →ₗ[R] R) : generator (ϕ.submodule_image N) ∣ ψ ⟨y, hNO yN⟩ := begin let a : R := generator (ϕ.submodule_image N), let d : R := is_principal.generator (submodule.span R {a, ψ ⟨y, hNO yN⟩}), have d_dvd_left : d ∣ a := (mem_iff_generator_dvd _).mp (subset_span (mem_insert _ _)), have d_dvd_right : d ∣ ψ ⟨y, hNO yN⟩ := (mem_iff_generator_dvd _).mp (subset_span (mem_insert_of_mem _ (mem_singleton _))), refine dvd_trans _ d_dvd_right, rw [dvd_generator_iff, ideal.span, ← span_singleton_generator (submodule.span R {a, ψ ⟨y, hNO yN⟩})], obtain ⟨r₁, r₂, d_eq⟩ : ∃ r₁ r₂ : R, d = r₁ * a + r₂ * ψ ⟨y, hNO yN⟩, { obtain ⟨r₁, r₂', hr₂', hr₁⟩ := mem_span_insert.mp (is_principal.generator_mem (submodule.span R {a, ψ ⟨y, hNO yN⟩})), obtain ⟨r₂, rfl⟩ := mem_span_singleton.mp hr₂', exact ⟨r₁, r₂, hr₁⟩ }, let ψ' : O →ₗ[R] R := r₁ • ϕ + r₂ • ψ, have : span R {d} ≤ ψ'.submodule_image N, { rw [span_le, singleton_subset_iff, set_like.mem_coe, linear_map.mem_submodule_image_of_le hNO], refine ⟨y, yN, _⟩, change r₁ * ϕ ⟨y, hNO yN⟩ + r₂ * ψ ⟨y, hNO yN⟩ = d, rw [d_eq, ϕy_eq] }, refine le_antisymm (this.trans (le_of_eq _)) (ideal.span_singleton_le_span_singleton.mpr d_dvd_left), rw span_singleton_generator, refine hϕ ψ' (le_trans _ this), rw [← span_singleton_generator (ϕ.submodule_image N)], exact ideal.span_singleton_le_span_singleton.mpr d_dvd_left, { exact subset_span (mem_insert _ _) } end /-- The induction hypothesis of `submodule.basis_of_pid` and `submodule.smith_normal_form`. Basically, it says: let `N ≤ M` be a pair of submodules, then we can find a pair of submodules `N' ≤ M'` of strictly smaller rank, whose basis we can extend to get a basis of `N` and `M`. Moreover, if the basis for `M'` is up to scalars a basis for `N'`, then the basis we find for `M` is up to scalars a basis for `N`. For `basis_of_pid` we only need the first half and can fix `M = ⊤`, for `smith_normal_form` we need the full statement, but must also feed in a basis for `M` using `basis_of_pid` to keep the induction going. -/ lemma submodule.basis_of_pid_aux [fintype ι] {O : Type*} [add_comm_group O] [module R O] (M N : submodule R O) (b'M : basis ι R M) (N_bot : N ≠ ⊥) (N_le_M : N ≤ M) : ∃ (y ∈ M) (a : R) (hay : a • y ∈ N) (M' ≤ M) (N' ≤ N) (N'_le_M' : N' ≤ M') (y_ortho_M' : ∀ (c : R) (z : O), z ∈ M' → c • y + z = 0 → c = 0) (ay_ortho_N' : ∀ (c : R) (z : O), z ∈ N' → c • a • y + z = 0 → c = 0), ∀ (n') (bN' : basis (fin n') R N'), ∃ (bN : basis (fin (n' + 1)) R N), ∀ (m') (hn'm' : n' ≤ m') (bM' : basis (fin m') R M'), ∃ (hnm : (n' + 1) ≤ (m' + 1)) (bM : basis (fin (m' + 1)) R M), ∀ (as : fin n' → R) (h : ∀ (i : fin n'), (bN' i : O) = as i • (bM' (fin.cast_le hn'm' i) : O)), ∃ (as' : fin (n' + 1) → R), ∀ (i : fin (n' + 1)), (bN i : O) = as' i • (bM (fin.cast_le hnm i) : O) := begin -- Let `ϕ` be a maximal projection of `M` onto `R`, in the sense that there is -- no `ψ` whose image of `N` is larger than `ϕ`'s image of `N`. have : ∃ ϕ : M →ₗ[R] R, ∀ (ψ : M →ₗ[R] R), ϕ.submodule_image N ≤ ψ.submodule_image N → ψ.submodule_image N = ϕ.submodule_image N, { obtain ⟨P, P_eq, P_max⟩ := set_has_maximal_iff_noetherian.mpr (infer_instance : is_noetherian R R) _ (show (set.range (λ ψ : M →ₗ[R] R, ψ.submodule_image N)).nonempty, from ⟨_, set.mem_range.mpr ⟨0, rfl⟩⟩), obtain ⟨ϕ, rfl⟩ := set.mem_range.mp P_eq, exact ⟨ϕ, λ ψ hψ, P_max _ ⟨_, rfl⟩ hψ⟩ }, let ϕ := this.some, have ϕ_max := this.some_spec, -- Since `ϕ(N)` is a `R`-submodule of the PID `R`, -- it is principal and generated by some `a`. let a := generator (ϕ.submodule_image N), have a_mem : a ∈ ϕ.submodule_image N := generator_mem _, -- If `a` is zero, then the submodule is trivial. So let's assume `a ≠ 0`, `N ≠ ⊥`. by_cases a_zero : a = 0, { have := eq_bot_of_generator_maximal_submodule_image_eq_zero b'M N_le_M ϕ_max a_zero, contradiction }, -- We claim that `ϕ⁻¹ a = y` can be taken as basis element of `N`. obtain ⟨y, yN, ϕy_eq⟩ := (linear_map.mem_submodule_image_of_le N_le_M).mp a_mem, have ϕy_ne_zero : ϕ ⟨y, N_le_M yN⟩ ≠ 0 := λ h, a_zero (ϕy_eq.symm.trans h), -- Write `y` as `a • y'` for some `y'`. have hdvd : ∀ i, a ∣ b'M.coord i ⟨y, N_le_M yN⟩ := λ i, generator_maximal_submodule_image_dvd N_le_M ϕ_max y yN ϕy_eq (b'M.coord i), choose c hc using hdvd, let y' : O := ∑ i, c i • b'M i, have y'M : y' ∈ M := M.sum_mem (λ i _, M.smul_mem (c i) (b'M i).2), have mk_y' : (⟨y', y'M⟩ : M) = ∑ i, c i • b'M i := subtype.ext (show y' = M.subtype _, by { simp only [linear_map.map_sum, linear_map.map_smul], refl }), have a_smul_y' : a • y' = y, { refine congr_arg coe (show (a • ⟨y', y'M⟩ : M) = ⟨y, N_le_M yN⟩, from _), rw [← b'M.sum_repr ⟨y, N_le_M yN⟩, mk_y', finset.smul_sum], refine finset.sum_congr rfl (λ i _, _), rw [← mul_smul, ← hc], refl }, -- We found an `y` and an `a`! refine ⟨y', y'M, a, a_smul_y'.symm ▸ yN, _⟩, have ϕy'_eq : ϕ ⟨y', y'M⟩ = 1 := mul_left_cancel₀ a_zero (calc a • ϕ ⟨y', y'M⟩ = ϕ ⟨a • y', _⟩ : (ϕ.map_smul a ⟨y', y'M⟩).symm ... = ϕ ⟨y, N_le_M yN⟩ : by simp only [a_smul_y'] ... = a : ϕy_eq ... = a * 1 : (mul_one a).symm), have ϕy'_ne_zero : ϕ ⟨y', y'M⟩ ≠ 0 := by simpa only [ϕy'_eq] using one_ne_zero, -- `M' := ker (ϕ : M → R)` is smaller than `M` and `N' := ker (ϕ : N → R)` is smaller than `N`. let M' : submodule R O := ϕ.ker.map M.subtype, let N' : submodule R O := (ϕ.comp (of_le N_le_M)).ker.map N.subtype, have M'_le_M : M' ≤ M := M.map_subtype_le ϕ.ker, have N'_le_M' : N' ≤ M', { intros x hx, simp only [mem_map, linear_map.mem_ker] at hx ⊢, obtain ⟨⟨x, xN⟩, hx, rfl⟩ := hx, exact ⟨⟨x, N_le_M xN⟩, hx, rfl⟩ }, have N'_le_N : N' ≤ N := N.map_subtype_le (ϕ.comp (of_le N_le_M)).ker, -- So fill in those results as well. refine ⟨M', M'_le_M, N', N'_le_N, N'_le_M', _⟩, -- Note that `y'` is orthogonal to `M'`. have y'_ortho_M' : ∀ (c : R) z ∈ M', c • y' + z = 0 → c = 0, { intros c x xM' hc, obtain ⟨⟨x, xM⟩, hx', rfl⟩ := submodule.mem_map.mp xM', rw linear_map.mem_ker at hx', have hc' : (c • ⟨y', y'M⟩ + ⟨x, xM⟩ : M) = 0 := subtype.coe_injective hc, simpa only [linear_map.map_add, linear_map.map_zero, linear_map.map_smul, smul_eq_mul, add_zero, mul_eq_zero, ϕy'_ne_zero, hx', or_false] using congr_arg ϕ hc' }, -- And `a • y'` is orthogonal to `N'`. have ay'_ortho_N' : ∀ (c : R) z ∈ N', c • a • y' + z = 0 → c = 0, { intros c z zN' hc, refine (mul_eq_zero.mp (y'_ortho_M' (a * c) z (N'_le_M' zN') _)).resolve_left a_zero, rw [mul_comm, mul_smul, hc] }, -- So we can extend a basis for `N'` with `y` refine ⟨y'_ortho_M', ay'_ortho_N', λ n' bN', ⟨_, _⟩⟩, { refine basis.mk_fin_cons_of_le y yN bN' N'_le_N _ _, { intros c z zN' hc, refine ay'_ortho_N' c z zN' _, rwa ← a_smul_y' at hc }, { intros z zN, obtain ⟨b, hb⟩ : _ ∣ ϕ ⟨z, N_le_M zN⟩ := generator_submodule_image_dvd_of_mem N_le_M ϕ zN, refine ⟨-b, submodule.mem_map.mpr ⟨⟨_, N.sub_mem zN (N.smul_mem b yN)⟩, _, _⟩⟩, { refine linear_map.mem_ker.mpr (show ϕ (⟨z, N_le_M zN⟩ - b • ⟨y, N_le_M yN⟩) = 0, from _), rw [linear_map.map_sub, linear_map.map_smul, hb, ϕy_eq, smul_eq_mul, mul_comm, sub_self] }, { simp only [sub_eq_add_neg, neg_smul], refl } } }, -- And extend a basis for `M'` with `y'` intros m' hn'm' bM', refine ⟨nat.succ_le_succ hn'm', _, _⟩, { refine basis.mk_fin_cons_of_le y' y'M bM' M'_le_M y'_ortho_M' _, intros z zM, refine ⟨-ϕ ⟨z, zM⟩, ⟨⟨z, zM⟩ - (ϕ ⟨z, zM⟩) • ⟨y', y'M⟩, linear_map.mem_ker.mpr _, _⟩⟩, { rw [linear_map.map_sub, linear_map.map_smul, ϕy'_eq, smul_eq_mul, mul_one, sub_self] }, { rw [linear_map.map_sub, linear_map.map_smul, sub_eq_add_neg, neg_smul], refl } }, -- It remains to show the extended bases are compatible with each other. intros as h, refine ⟨fin.cons a as, _⟩, intro i, rw [basis.coe_mk_fin_cons_of_le, basis.coe_mk_fin_cons_of_le], refine fin.cases _ (λ i, _) i, { simp only [fin.cons_zero, fin.cast_le_zero], exact a_smul_y'.symm }, { rw fin.cast_le_succ, simp only [fin.cons_succ, coe_of_le, h i] } end /-- A submodule of a free `R`-module of finite rank is also a free `R`-module of finite rank, if `R` is a principal ideal domain. This is a `lemma` to make the induction a bit easier. To actually access the basis, see `submodule.basis_of_pid`. See also the stronger version `submodule.smith_normal_form`. -/ lemma submodule.nonempty_basis_of_pid {ι : Type*} [fintype ι] (b : basis ι R M) (N : submodule R M) : ∃ (n : ℕ), nonempty (basis (fin n) R N) := begin haveI := classical.dec_eq M, refine N.induction_on_rank b _ _, intros N ih, let b' := (b.reindex (fintype.equiv_fin ι)).map (linear_equiv.of_top _ rfl).symm, by_cases N_bot : N = ⊥, { subst N_bot, exact ⟨0, ⟨basis.empty _⟩⟩ }, obtain ⟨y, -, a, hay, M', -, N', N'_le_N, -, -, ay_ortho, h'⟩ := submodule.basis_of_pid_aux ⊤ N b' N_bot le_top, obtain ⟨n', ⟨bN'⟩⟩ := ih N' N'_le_N _ hay ay_ortho, obtain ⟨bN, hbN⟩ := h' n' bN', exact ⟨n' + 1, ⟨bN⟩⟩ end /-- A submodule of a free `R`-module of finite rank is also a free `R`-module of finite rank, if `R` is a principal ideal domain. See also the stronger version `submodule.smith_normal_form`. -/ noncomputable def submodule.basis_of_pid {ι : Type*} [fintype ι] (b : basis ι R M) (N : submodule R M) : Σ (n : ℕ), (basis (fin n) R N) := ⟨_, (N.nonempty_basis_of_pid b).some_spec.some⟩ lemma submodule.basis_of_pid_bot {ι : Type*} [fintype ι] (b : basis ι R M) : submodule.basis_of_pid b ⊥ = ⟨0, basis.empty _⟩ := begin obtain ⟨n, b'⟩ := submodule.basis_of_pid b ⊥, let e : fin n ≃ fin 0 := b'.index_equiv (basis.empty _ : basis (fin 0) R (⊥ : submodule R M)), obtain rfl : n = 0 := by simpa using fintype.card_eq.mpr ⟨e⟩, exact sigma.eq rfl (basis.eq_of_apply_eq $ fin_zero_elim) end /-- A submodule inside a free `R`-submodule of finite rank is also a free `R`-module of finite rank, if `R` is a principal ideal domain. See also the stronger version `submodule.smith_normal_form_of_le`. -/ noncomputable def submodule.basis_of_pid_of_le {ι : Type*} [fintype ι] {N O : submodule R M} (hNO : N ≤ O) (b : basis ι R O) : Σ (n : ℕ), basis (fin n) R N := let ⟨n, bN'⟩ := submodule.basis_of_pid b (N.comap O.subtype) in ⟨n, bN'.map (submodule.comap_subtype_equiv_of_le hNO)⟩ /-- A submodule inside the span of a linear independent family is a free `R`-module of finite rank, if `R` is a principal ideal domain. -/ noncomputable def submodule.basis_of_pid_of_le_span {ι : Type*} [fintype ι] {b : ι → M} (hb : linear_independent R b) {N : submodule R M} (le : N ≤ submodule.span R (set.range b)) : Σ (n : ℕ), basis (fin n) R N := submodule.basis_of_pid_of_le le (basis.span hb) variable {M} /-- A finite type torsion free module over a PID is free. -/ noncomputable def module.free_of_finite_type_torsion_free [fintype ι] {s : ι → M} (hs : span R (range s) = ⊤) [no_zero_smul_divisors R M] : Σ (n : ℕ), basis (fin n) R M := begin classical, -- We define `N` as the submodule spanned by a maximal linear independent subfamily of `s` have := exists_maximal_independent R s, let I : set ι := this.some, obtain ⟨indepI : linear_independent R (s ∘ coe : I → M), hI : ∀ i ∉ I, ∃ a : R, a ≠ 0 ∧ a • s i ∈ span R (s '' I)⟩ := this.some_spec, let N := span R (range $ (s ∘ coe : I → M)), -- same as `span R (s '' I)` but more convenient let sI : I → N := λ i, ⟨s i.1, subset_span (mem_range_self i)⟩, -- `s` restricted to `I` let sI_basis : basis I R N, -- `s` restricted to `I` is a basis of `N` from basis.span indepI, -- Our first goal is to build `A ≠ 0` such that `A • M ⊆ N` have exists_a : ∀ i : ι, ∃ a : R, a ≠ 0 ∧ a • s i ∈ N, { intro i, by_cases hi : i ∈ I, { use [1, zero_ne_one.symm], rw one_smul, exact subset_span (mem_range_self (⟨i, hi⟩ : I)) }, { simpa [image_eq_range s I] using hI i hi } }, choose a ha ha' using exists_a, let A := ∏ i, a i, have hA : A ≠ 0, { rw finset.prod_ne_zero_iff, simpa using ha }, -- `M ≃ A • M` because `M` is torsion free and `A ≠ 0` let φ : M →ₗ[R] M := linear_map.lsmul R M A, have : φ.ker = ⊥, from linear_map.ker_lsmul hA, let ψ : M ≃ₗ[R] φ.range := linear_equiv.of_injective φ (linear_map.ker_eq_bot.mp this), have : φ.range ≤ N, -- as announced, `A • M ⊆ N` { suffices : ∀ i, φ (s i) ∈ N, { rw [linear_map.range_eq_map, ← hs, φ.map_span_le], rintros _ ⟨i, rfl⟩, apply this }, intro i, calc (∏ j, a j) • s i = (∏ j in {i}ᶜ, a j) • a i • s i : by rw [fintype.prod_eq_prod_compl_mul i, mul_smul] ... ∈ N : N.smul_mem _ (ha' i) }, -- Since a submodule of a free `R`-module is free, we get that `A • M` is free obtain ⟨n, b : basis (fin n) R φ.range⟩ := submodule.basis_of_pid_of_le this sI_basis, -- hence `M` is free. exact ⟨n, b.map ψ.symm⟩ end /-- A finite type torsion free module over a PID is free. -/ noncomputable def module.free_of_finite_type_torsion_free' [module.finite R M] [no_zero_smul_divisors R M] : Σ (n : ℕ), basis (fin n) R M := module.free_of_finite_type_torsion_free module.finite.exists_fin.some_spec.some_spec section smith_normal /-- A Smith normal form basis for a submodule `N` of a module `M` consists of bases for `M` and `N` such that the inclusion map `N → M` can be written as a (rectangular) matrix with `a` along the diagonal: in Smith normal form. -/ @[nolint has_nonempty_instance] structure basis.smith_normal_form (N : submodule R M) (ι : Type*) (n : ℕ) := (bM : basis ι R M) (bN : basis (fin n) R N) (f : fin n ↪ ι) (a : fin n → R) (snf : ∀ i, (bN i : M) = a i • bM (f i)) /-- If `M` is finite free over a PID `R`, then any submodule `N` is free and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix in Smith normal form. See `submodule.smith_normal_form_of_le` for a version of this theorem that returns a `basis.smith_normal_form`. This is a strengthening of `submodule.basis_of_pid_of_le`. -/ theorem submodule.exists_smith_normal_form_of_le [fintype ι] (b : basis ι R M) (N O : submodule R M) (N_le_O : N ≤ O) : ∃ (n o : ℕ) (hno : n ≤ o) (bO : basis (fin o) R O) (bN : basis (fin n) R N) (a : fin n → R), ∀ i, (bN i : M) = a i • bO (fin.cast_le hno i) := begin revert N, refine induction_on_rank b _ _ O, intros M ih N N_le_M, obtain ⟨m, b'M⟩ := M.basis_of_pid b, by_cases N_bot : N = ⊥, { subst N_bot, exact ⟨0, m, nat.zero_le _, b'M, basis.empty _, fin_zero_elim, fin_zero_elim⟩ }, obtain ⟨y, hy, a, hay, M', M'_le_M, N', N'_le_N, N'_le_M', y_ortho, ay_ortho, h⟩ := submodule.basis_of_pid_aux M N b'M N_bot N_le_M, obtain ⟨n', m', hn'm', bM', bN', as', has'⟩ := ih M' M'_le_M y hy y_ortho N' N'_le_M', obtain ⟨bN, h'⟩ := h n' bN', obtain ⟨hmn, bM, h''⟩ := h' m' hn'm' bM', obtain ⟨as, has⟩ := h'' as' has', exact ⟨_, _, hmn, bM, bN, as, has⟩ end /-- If `M` is finite free over a PID `R`, then any submodule `N` is free and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix in Smith normal form. See `submodule.exists_smith_normal_form_of_le` for a version of this theorem that doesn't need to map `N` into a submodule of `O`. This is a strengthening of `submodule.basis_of_pid_of_le`. -/ noncomputable def submodule.smith_normal_form_of_le [fintype ι] (b : basis ι R M) (N O : submodule R M) (N_le_O : N ≤ O) : Σ (o n : ℕ), basis.smith_normal_form (N.comap O.subtype) (fin o) n := begin choose n o hno bO bN a snf using N.exists_smith_normal_form_of_le b O N_le_O, refine ⟨o, n, bO, bN.map (comap_subtype_equiv_of_le N_le_O).symm, (fin.cast_le hno).to_embedding, a, λ i, _⟩, ext, simp only [snf, basis.map_apply, submodule.comap_subtype_equiv_of_le_symm_apply_coe_coe, submodule.coe_smul_of_tower, rel_embedding.coe_fn_to_embedding] end /-- If `M` is finite free over a PID `R`, then any submodule `N` is free and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix in Smith normal form. This is a strengthening of `submodule.basis_of_pid`. See also `ideal.smith_normal_form`, which moreover proves that the dimension of an ideal is the same as the dimension of the whole ring. -/ noncomputable def submodule.smith_normal_form [fintype ι] (b : basis ι R M) (N : submodule R M) : Σ (n : ℕ), basis.smith_normal_form N ι n := let ⟨m, n, bM, bN, f, a, snf⟩ := N.smith_normal_form_of_le b ⊤ le_top, bM' := bM.map (linear_equiv.of_top _ rfl), e := bM'.index_equiv b in ⟨n, bM'.reindex e, bN.map (comap_subtype_equiv_of_le le_top), f.trans e.to_embedding, a, λ i, by simp only [snf, basis.map_apply, linear_equiv.of_top_apply, submodule.coe_smul_of_tower, submodule.comap_subtype_equiv_of_le_apply_coe, coe_coe, basis.reindex_apply, equiv.to_embedding_apply, function.embedding.trans_apply, equiv.symm_apply_apply]⟩ /-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module, then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can find a basis for `S` and `I` such that the inclusion map is a square diagonal matrix. See `ideal.exists_smith_normal_form` for a version of this theorem that doesn't need to map `I` into a submodule of `R`. This is a strengthening of `submodule.basis_of_pid`. -/ noncomputable def ideal.smith_normal_form [fintype ι] {S : Type*} [comm_ring S] [is_domain S] [algebra R S] (b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) : basis.smith_normal_form (I.restrict_scalars R) ι (fintype.card ι) := let ⟨n, bS, bI, f, a, snf⟩ := (I.restrict_scalars R).smith_normal_form b in have eq : _ := ideal.rank_eq bS hI (bI.map ((restrict_scalars_equiv R S S I).restrict_scalars _)), let e : fin n ≃ fin (fintype.card ι) := fintype.equiv_of_card_eq (by rw [eq, fintype.card_fin]) in ⟨bS, bI.reindex e, e.symm.to_embedding.trans f, a ∘ e.symm, λ i, by simp only [snf, basis.coe_reindex, function.embedding.trans_apply, equiv.to_embedding_apply]⟩ /-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module, then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can find a basis for `S` and `I` such that the inclusion map is a square diagonal matrix. See also `ideal.smith_normal_form` for a version of this theorem that returns a `basis.smith_normal_form`. -/ theorem ideal.exists_smith_normal_form [fintype ι] {S : Type*} [comm_ring S] [is_domain S] [algebra R S] (b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) : ∃ (b' : basis ι R S) (a : ι → R) (ab' : basis ι R I), ∀ i, (ab' i : S) = a i • b' i := let ⟨bS, bI, f, a, snf⟩ := I.smith_normal_form b hI, e : fin (fintype.card ι) ≃ ι := equiv.of_bijective f ((fintype.bijective_iff_injective_and_card f).mpr ⟨f.injective, fintype.card_fin _⟩) in have fe : ∀ i, f (e.symm i) = i := e.apply_symm_apply, ⟨bS, a ∘ e.symm, (bI.reindex e).map ((restrict_scalars_equiv _ _ _ _).restrict_scalars R), λ i, by simp only [snf, fe, basis.map_apply, linear_equiv.restrict_scalars_apply, submodule.restrict_scalars_equiv_apply, basis.coe_reindex]⟩ end smith_normal end principal_ideal_domain /-- A set of linearly independent vectors in a module `M` over a semiring `S` is also linearly independent over a subring `R` of `K`. -/ lemma linear_independent.restrict_scalars_algebras {R S M ι : Type*} [comm_semiring R] [semiring S] [add_comm_monoid M] [algebra R S] [module R M] [module S M] [is_scalar_tower R S M] (hinj : function.injective (algebra_map R S)) {v : ι → M} (li : linear_independent S v) : linear_independent R v := linear_independent.restrict_scalars (by rwa algebra.algebra_map_eq_smul_one' at hinj) li