Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Riccardo Brasca. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Riccardo Brasca | |
-/ | |
import linear_algebra.direct_sum.finsupp | |
import logic.small | |
import linear_algebra.std_basis | |
import linear_algebra.finsupp_vector_space | |
/-! | |
# Free modules | |
We introduce a class `module.free R M`, for `R` a `semiring` and `M` an `R`-module and we provide | |
several basic instances for this class. | |
Use `finsupp.total_id_surjective` to prove that any module is the quotient of a free module. | |
## Main definition | |
* `module.free R M` : the class of free `R`-modules. | |
-/ | |
universes u v w z | |
variables {ι : Type*} (R : Type u) (M : Type v) (N : Type z) | |
open_locale tensor_product direct_sum big_operators | |
section basic | |
variables [semiring R] [add_comm_monoid M] [module R M] | |
/-- `module.free R M` is the statement that the `R`-module `M` is free.-/ | |
class module.free : Prop := | |
(exists_basis [] : nonempty (Σ (I : Type v), basis I R M)) | |
/- If `M` fits in universe `w`, then freeness is equivalent to existence of a basis in that | |
universe. | |
Note that if `M` does not fit in `w`, the reverse direction of this implication is still true as | |
`module.free.of_basis`. -/ | |
lemma module.free_def [small.{w} M] : module.free R M ↔ ∃ (I : Type w), nonempty (basis I R M) := | |
⟨ λ h, ⟨shrink (set.range h.exists_basis.some.2), | |
⟨(basis.reindex_range h.exists_basis.some.2).reindex (equiv_shrink _)⟩⟩, | |
λ h, ⟨(nonempty_sigma.2 h).map $ λ ⟨i, b⟩, ⟨set.range b, b.reindex_range⟩⟩⟩ | |
lemma module.free_iff_set : module.free R M ↔ ∃ (S : set M), nonempty (basis S R M) := | |
⟨λ h, ⟨set.range h.exists_basis.some.2, ⟨basis.reindex_range h.exists_basis.some.2⟩⟩, | |
λ ⟨S, hS⟩, ⟨nonempty_sigma.2 ⟨S, hS⟩⟩⟩ | |
variables {R M} | |
lemma module.free.of_basis {ι : Type w} (b : basis ι R M) : module.free R M := | |
(module.free_def R M).2 ⟨set.range b, ⟨b.reindex_range⟩⟩ | |
end basic | |
namespace module.free | |
section semiring | |
variables (R M) [semiring R] [add_comm_monoid M] [module R M] [module.free R M] | |
variables [add_comm_monoid N] [module R N] | |
/-- If `module.free R M` then `choose_basis_index R M` is the `ι` which indexes the basis | |
`ι → M`. -/ | |
@[nolint has_nonempty_instance] def choose_basis_index := (exists_basis R M).some.1 | |
/-- If `module.free R M` then `choose_basis : ι → M` is the basis. | |
Here `ι = choose_basis_index R M`. -/ | |
noncomputable def choose_basis : basis (choose_basis_index R M) R M := (exists_basis R M).some.2 | |
/-- The isomorphism `M ≃ₗ[R] (choose_basis_index R M →₀ R)`. -/ | |
noncomputable def repr : M ≃ₗ[R] (choose_basis_index R M →₀ R) := (choose_basis R M).repr | |
/-- The universal property of free modules: giving a functon `(choose_basis_index R M) → N`, for `N` | |
an `R`-module, is the same as giving an `R`-linear map `M →ₗ[R] N`. | |
This definition is parameterized over an extra `semiring S`, | |
such that `smul_comm_class R S M'` holds. | |
If `R` is commutative, you can set `S := R`; if `R` is not commutative, | |
you can recover an `add_equiv` by setting `S := ℕ`. | |
See library note [bundled maps over different rings]. -/ | |
noncomputable def constr {S : Type z} [semiring S] [module S N] [smul_comm_class R S N] : | |
((choose_basis_index R M) → N) ≃ₗ[S] M →ₗ[R] N := basis.constr (choose_basis R M) S | |
@[priority 100] | |
instance no_zero_smul_divisors [no_zero_divisors R] : no_zero_smul_divisors R M := | |
let ⟨⟨_, b⟩⟩ := exists_basis R M in b.no_zero_smul_divisors | |
variables {R M N} | |
lemma of_equiv (e : M ≃ₗ[R] N) : module.free R N := | |
of_basis $ (choose_basis R M).map e | |
/-- A variation of `of_equiv`: the assumption `module.free R P` here is explicit rather than an | |
instance. -/ | |
lemma of_equiv' {P : Type v} [add_comm_monoid P] [module R P] (h : module.free R P) | |
(e : P ≃ₗ[R] N) : module.free R N := | |
of_equiv e | |
variables (R M N) | |
/-- The module structure provided by `semiring.to_module` is free. -/ | |
instance self : module.free R R := of_basis (basis.singleton unit R) | |
instance prod [module.free R N] : module.free R (M × N) := | |
of_basis $ (choose_basis R M).prod (choose_basis R N) | |
/-- The product of finitely many free modules is free. -/ | |
instance pi (M : ι → Type*) [finite ι] [Π (i : ι), add_comm_monoid (M i)] | |
[Π (i : ι), module R (M i)] [Π (i : ι), module.free R (M i)] : module.free R (Π i, M i) := | |
let ⟨_⟩ := nonempty_fintype ι in by exactI (of_basis $ pi.basis $ λ i, choose_basis R (M i)) | |
/-- The module of finite matrices is free. -/ | |
instance matrix {m n : Type*} [finite m] [finite n] : module.free R (matrix m n M) := | |
module.free.pi R _ | |
variables (ι) | |
/-- The product of finitely many free modules is free (non-dependent version to help with typeclass | |
search). -/ | |
instance function [finite ι] : module.free R (ι → M) := free.pi _ _ | |
instance finsupp : module.free R (ι →₀ M) := | |
of_basis (finsupp.basis $ λ i, choose_basis R M) | |
variables {ι} | |
@[priority 100] | |
instance of_subsingleton [subsingleton N] : module.free R N := | |
of_basis (basis.empty N : basis pempty R N) | |
@[priority 100] | |
instance of_subsingleton' [subsingleton R] : module.free R N := | |
by letI := module.subsingleton R N; exact module.free.of_subsingleton R N | |
instance dfinsupp {ι : Type*} (M : ι → Type*) [Π (i : ι), add_comm_monoid (M i)] | |
[Π (i : ι), module R (M i)] [Π (i : ι), module.free R (M i)] : module.free R (Π₀ i, M i) := | |
of_basis $ dfinsupp.basis $ λ i, choose_basis R (M i) | |
instance direct_sum {ι : Type*} (M : ι → Type*) [Π (i : ι), add_comm_monoid (M i)] | |
[Π (i : ι), module R (M i)] [Π (i : ι), module.free R (M i)] : module.free R (⨁ i, M i) := | |
module.free.dfinsupp R M | |
end semiring | |
section comm_ring | |
variables [comm_ring R] [add_comm_group M] [module R M] [module.free R M] | |
variables [add_comm_group N] [module R N] [module.free R N] | |
instance tensor : module.free R (M ⊗[R] N) := | |
of_equiv' (of_equiv' (free.finsupp _ R _) (finsupp_tensor_finsupp' R _ _).symm) | |
(tensor_product.congr (choose_basis R M).repr (choose_basis R N).repr).symm | |
end comm_ring | |
section division_ring | |
variables [division_ring R] [add_comm_group M] [module R M] | |
@[priority 100] | |
instance of_division_ring : module.free R M := | |
of_basis (basis.of_vector_space R M) | |
end division_ring | |
end module.free | |