/- Copyright (c) 2021 Riccardo Brasca. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Riccardo Brasca -/ import linear_algebra.direct_sum.finsupp import logic.small import linear_algebra.std_basis import linear_algebra.finsupp_vector_space /-! # Free modules We introduce a class `module.free R M`, for `R` a `semiring` and `M` an `R`-module and we provide several basic instances for this class. Use `finsupp.total_id_surjective` to prove that any module is the quotient of a free module. ## Main definition * `module.free R M` : the class of free `R`-modules. -/ universes u v w z variables {ι : Type*} (R : Type u) (M : Type v) (N : Type z) open_locale tensor_product direct_sum big_operators section basic variables [semiring R] [add_comm_monoid M] [module R M] /-- `module.free R M` is the statement that the `R`-module `M` is free.-/ class module.free : Prop := (exists_basis [] : nonempty (Σ (I : Type v), basis I R M)) /- If `M` fits in universe `w`, then freeness is equivalent to existence of a basis in that universe. Note that if `M` does not fit in `w`, the reverse direction of this implication is still true as `module.free.of_basis`. -/ lemma module.free_def [small.{w} M] : module.free R M ↔ ∃ (I : Type w), nonempty (basis I R M) := ⟨ λ h, ⟨shrink (set.range h.exists_basis.some.2), ⟨(basis.reindex_range h.exists_basis.some.2).reindex (equiv_shrink _)⟩⟩, λ h, ⟨(nonempty_sigma.2 h).map $ λ ⟨i, b⟩, ⟨set.range b, b.reindex_range⟩⟩⟩ lemma module.free_iff_set : module.free R M ↔ ∃ (S : set M), nonempty (basis S R M) := ⟨λ h, ⟨set.range h.exists_basis.some.2, ⟨basis.reindex_range h.exists_basis.some.2⟩⟩, λ ⟨S, hS⟩, ⟨nonempty_sigma.2 ⟨S, hS⟩⟩⟩ variables {R M} lemma module.free.of_basis {ι : Type w} (b : basis ι R M) : module.free R M := (module.free_def R M).2 ⟨set.range b, ⟨b.reindex_range⟩⟩ end basic namespace module.free section semiring variables (R M) [semiring R] [add_comm_monoid M] [module R M] [module.free R M] variables [add_comm_monoid N] [module R N] /-- If `module.free R M` then `choose_basis_index R M` is the `ι` which indexes the basis `ι → M`. -/ @[nolint has_nonempty_instance] def choose_basis_index := (exists_basis R M).some.1 /-- If `module.free R M` then `choose_basis : ι → M` is the basis. Here `ι = choose_basis_index R M`. -/ noncomputable def choose_basis : basis (choose_basis_index R M) R M := (exists_basis R M).some.2 /-- The isomorphism `M ≃ₗ[R] (choose_basis_index R M →₀ R)`. -/ noncomputable def repr : M ≃ₗ[R] (choose_basis_index R M →₀ R) := (choose_basis R M).repr /-- The universal property of free modules: giving a functon `(choose_basis_index R M) → N`, for `N` an `R`-module, is the same as giving an `R`-linear map `M →ₗ[R] N`. This definition is parameterized over an extra `semiring S`, such that `smul_comm_class R S M'` holds. If `R` is commutative, you can set `S := R`; if `R` is not commutative, you can recover an `add_equiv` by setting `S := ℕ`. See library note [bundled maps over different rings]. -/ noncomputable def constr {S : Type z} [semiring S] [module S N] [smul_comm_class R S N] : ((choose_basis_index R M) → N) ≃ₗ[S] M →ₗ[R] N := basis.constr (choose_basis R M) S @[priority 100] instance no_zero_smul_divisors [no_zero_divisors R] : no_zero_smul_divisors R M := let ⟨⟨_, b⟩⟩ := exists_basis R M in b.no_zero_smul_divisors variables {R M N} lemma of_equiv (e : M ≃ₗ[R] N) : module.free R N := of_basis $ (choose_basis R M).map e /-- A variation of `of_equiv`: the assumption `module.free R P` here is explicit rather than an instance. -/ lemma of_equiv' {P : Type v} [add_comm_monoid P] [module R P] (h : module.free R P) (e : P ≃ₗ[R] N) : module.free R N := of_equiv e variables (R M N) /-- The module structure provided by `semiring.to_module` is free. -/ instance self : module.free R R := of_basis (basis.singleton unit R) instance prod [module.free R N] : module.free R (M × N) := of_basis $ (choose_basis R M).prod (choose_basis R N) /-- The product of finitely many free modules is free. -/ instance pi (M : ι → Type*) [finite ι] [Π (i : ι), add_comm_monoid (M i)] [Π (i : ι), module R (M i)] [Π (i : ι), module.free R (M i)] : module.free R (Π i, M i) := let ⟨_⟩ := nonempty_fintype ι in by exactI (of_basis $ pi.basis $ λ i, choose_basis R (M i)) /-- The module of finite matrices is free. -/ instance matrix {m n : Type*} [finite m] [finite n] : module.free R (matrix m n M) := module.free.pi R _ variables (ι) /-- The product of finitely many free modules is free (non-dependent version to help with typeclass search). -/ instance function [finite ι] : module.free R (ι → M) := free.pi _ _ instance finsupp : module.free R (ι →₀ M) := of_basis (finsupp.basis $ λ i, choose_basis R M) variables {ι} @[priority 100] instance of_subsingleton [subsingleton N] : module.free R N := of_basis (basis.empty N : basis pempty R N) @[priority 100] instance of_subsingleton' [subsingleton R] : module.free R N := by letI := module.subsingleton R N; exact module.free.of_subsingleton R N instance dfinsupp {ι : Type*} (M : ι → Type*) [Π (i : ι), add_comm_monoid (M i)] [Π (i : ι), module R (M i)] [Π (i : ι), module.free R (M i)] : module.free R (Π₀ i, M i) := of_basis $ dfinsupp.basis $ λ i, choose_basis R (M i) instance direct_sum {ι : Type*} (M : ι → Type*) [Π (i : ι), add_comm_monoid (M i)] [Π (i : ι), module R (M i)] [Π (i : ι), module.free R (M i)] : module.free R (⨁ i, M i) := module.free.dfinsupp R M end semiring section comm_ring variables [comm_ring R] [add_comm_group M] [module R M] [module.free R M] variables [add_comm_group N] [module R N] [module.free R N] instance tensor : module.free R (M ⊗[R] N) := of_equiv' (of_equiv' (free.finsupp _ R _) (finsupp_tensor_finsupp' R _ _).symm) (tensor_product.congr (choose_basis R M).repr (choose_basis R N).repr).symm end comm_ring section division_ring variables [division_ring R] [add_comm_group M] [module R M] @[priority 100] instance of_division_ring : module.free R M := of_basis (basis.of_vector_space R M) end division_ring end module.free