Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
19.5 kB
/-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Scott Morrison, Adam Topaz
-/
import algebraic_topology.simplex_category
import category_theory.arrow
import category_theory.limits.functor_category
import category_theory.opposites
/-!
# Simplicial objects in a category.
A simplicial object in a category `C` is a `C`-valued presheaf on `simplex_category`.
(Similarly a cosimplicial object is functor `simplex_category ⥤ C`.)
Use the notation `X _[n]` in the `simplicial` locale to obtain the `n`-th term of a
(co)simplicial object `X`, where `n` is a natural number.
-/
open opposite
open category_theory
open category_theory.limits
universes v u v' u'
namespace category_theory
variables (C : Type u) [category.{v} C]
/-- The category of simplicial objects valued in a category `C`.
This is the category of contravariant functors from `simplex_category` to `C`. -/
@[derive category, nolint has_nonempty_instance]
def simplicial_object := simplex_categoryᵒᵖ ⥤ C
namespace simplicial_object
localized
"notation X `_[`:1000 n `]` :=
(X : category_theory.simplicial_object _).obj (opposite.op (simplex_category.mk n))"
in simplicial
instance {J : Type v} [small_category J] [has_limits_of_shape J C] :
has_limits_of_shape J (simplicial_object C) := by {dsimp [simplicial_object], apply_instance}
instance [has_limits C] : has_limits (simplicial_object C) := ⟨infer_instance⟩
instance {J : Type v} [small_category J] [has_colimits_of_shape J C] :
has_colimits_of_shape J (simplicial_object C) := by {dsimp [simplicial_object], apply_instance}
instance [has_colimits C] : has_colimits (simplicial_object C) := ⟨infer_instance⟩
variables {C} (X : simplicial_object C)
/-- Face maps for a simplicial object. -/
def δ {n} (i : fin (n+2)) : X _[n+1] ⟶ X _[n] :=
X.map (simplex_category.δ i).op
/-- Degeneracy maps for a simplicial object. -/
def σ {n} (i : fin (n+1)) : X _[n] ⟶ X _[n+1] :=
X.map (simplex_category.σ i).op
/-- Isomorphisms from identities in ℕ. -/
def eq_to_iso {n m : ℕ} (h : n = m) : X _[n] ≅ X _[m] :=
X.map_iso (eq_to_iso (by rw h))
@[simp] lemma eq_to_iso_refl {n : ℕ} (h : n = n) : X.eq_to_iso h = iso.refl _ :=
by { ext, simp [eq_to_iso], }
/-- The generic case of the first simplicial identity -/
lemma δ_comp_δ {n} {i j : fin (n+2)} (H : i ≤ j) :
X.δ j.succ ≫ X.δ i = X.δ i.cast_succ ≫ X.δ j :=
by { dsimp [δ], simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_δ H] }
/-- The special case of the first simplicial identity -/
lemma δ_comp_δ_self {n} {i : fin (n+2)} : X.δ i.cast_succ ≫ X.δ i = X.δ i.succ ≫ X.δ i :=
by { dsimp [δ], simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_δ_self] }
/-- The second simplicial identity -/
lemma δ_comp_σ_of_le {n} {i : fin (n+2)} {j : fin (n+1)} (H : i ≤ j.cast_succ) :
X.σ j.succ ≫ X.δ i.cast_succ = X.δ i ≫ X.σ j :=
by { dsimp [δ, σ], simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_σ_of_le H] }
/-- The first part of the third simplicial identity -/
lemma δ_comp_σ_self {n} {i : fin (n+1)} :
X.σ i ≫ X.δ i.cast_succ = 𝟙 _ :=
begin
dsimp [δ, σ],
simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_σ_self, op_id, X.map_id],
end
/-- The second part of the third simplicial identity -/
lemma δ_comp_σ_succ {n} {i : fin (n+1)} :
X.σ i ≫ X.δ i.succ = 𝟙 _ :=
begin
dsimp [δ, σ],
simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_σ_succ, op_id, X.map_id],
end
/-- The fourth simplicial identity -/
lemma δ_comp_σ_of_gt {n} {i : fin (n+2)} {j : fin (n+1)} (H : j.cast_succ < i) :
X.σ j.cast_succ ≫ X.δ i.succ = X.δ i ≫ X.σ j :=
by { dsimp [δ, σ], simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_σ_of_gt H] }
/-- The fifth simplicial identity -/
lemma σ_comp_σ {n} {i j : fin (n+1)} (H : i ≤ j) :
X.σ j ≫ X.σ i.cast_succ = X.σ i ≫ X.σ j.succ :=
by { dsimp [δ, σ], simp only [←X.map_comp, ←op_comp, simplex_category.σ_comp_σ H] }
variable (C)
/-- Functor composition induces a functor on simplicial objects. -/
@[simps]
def whiskering (D : Type*) [category D] :
(C ⥤ D) ⥤ simplicial_object C ⥤ simplicial_object D :=
whiskering_right _ _ _
/-- Truncated simplicial objects. -/
@[derive category, nolint has_nonempty_instance]
def truncated (n : ℕ) := (simplex_category.truncated n)ᵒᵖ ⥤ C
variable {C}
namespace truncated
instance {n} {J : Type v} [small_category J] [has_limits_of_shape J C] :
has_limits_of_shape J (simplicial_object.truncated C n) := by {dsimp [truncated], apply_instance}
instance {n} [has_limits C] : has_limits (simplicial_object.truncated C n) := ⟨infer_instance⟩
instance {n} {J : Type v} [small_category J] [has_colimits_of_shape J C] :
has_colimits_of_shape J (simplicial_object.truncated C n) :=
by {dsimp [truncated], apply_instance}
instance {n} [has_colimits C] : has_colimits (simplicial_object.truncated C n) := ⟨infer_instance⟩
variable (C)
/-- Functor composition induces a functor on truncated simplicial objects. -/
@[simps]
def whiskering {n} (D : Type*) [category D] :
(C ⥤ D) ⥤ truncated C n ⥤ truncated D n :=
whiskering_right _ _ _
variable {C}
end truncated
section skeleton
/-- The skeleton functor from simplicial objects to truncated simplicial objects. -/
def sk (n : ℕ) : simplicial_object C ⥤ simplicial_object.truncated C n :=
(whiskering_left _ _ _).obj simplex_category.truncated.inclusion.op
end skeleton
variable (C)
/-- The constant simplicial object is the constant functor. -/
abbreviation const : C ⥤ simplicial_object C := category_theory.functor.const _
/-- The category of augmented simplicial objects, defined as a comma category. -/
@[derive category, nolint has_nonempty_instance]
def augmented := comma (𝟭 (simplicial_object C)) (const C)
variable {C}
namespace augmented
/-- Drop the augmentation. -/
@[simps]
def drop : augmented C ⥤ simplicial_object C := comma.fst _ _
/-- The point of the augmentation. -/
@[simps]
def point : augmented C ⥤ C := comma.snd _ _
/-- The functor from augmented objects to arrows. -/
@[simps]
def to_arrow : augmented C ⥤ arrow C :=
{ obj := λ X,
{ left := (drop.obj X) _[0],
right := (point.obj X),
hom := X.hom.app _ },
map := λ X Y η,
{ left := (drop.map η).app _,
right := (point.map η),
w' := begin
dsimp,
rw ← nat_trans.comp_app,
erw η.w,
refl,
end } }
variable (C)
/-- Functor composition induces a functor on augmented simplicial objects. -/
@[simp]
def whiskering_obj (D : Type*) [category D] (F : C ⥤ D) :
augmented C ⥤ augmented D :=
{ obj := λ X,
{ left := ((whiskering _ _).obj F).obj (drop.obj X),
right := F.obj (point.obj X),
hom := whisker_right X.hom F ≫ (functor.const_comp _ _ _).hom },
map := λ X Y η,
{ left := whisker_right η.left _,
right := F.map η.right,
w' := begin
ext,
dsimp,
rw [category.comp_id, category.comp_id, ← F.map_comp, ← F.map_comp, ← nat_trans.comp_app],
erw η.w,
refl,
end } }
/-- Functor composition induces a functor on augmented simplicial objects. -/
@[simps]
def whiskering (D : Type u') [category.{v'} D] :
(C ⥤ D) ⥤ augmented C ⥤ augmented D :=
{ obj := whiskering_obj _ _,
map := λ X Y η,
{ app := λ A,
{ left := whisker_left _ η,
right := η.app _,
w' := begin
ext n,
dsimp,
rw [category.comp_id, category.comp_id, η.naturality],
end }, }, }
variable {C}
end augmented
open_locale simplicial
/-- Aaugment a simplicial object with an object. -/
@[simps]
def augment (X : simplicial_object C) (X₀ : C) (f : X _[0] ⟶ X₀)
(w : ∀ (i : simplex_category) (g₁ g₂ : [0] ⟶ i),
X.map g₁.op ≫ f = X.map g₂.op ≫ f) : simplicial_object.augmented C :=
{ left := X,
right := X₀,
hom :=
{ app := λ i, X.map (simplex_category.const i.unop 0).op ≫ f,
naturality' := begin
intros i j g,
dsimp,
rw ← g.op_unop,
simpa only [← X.map_comp, ← category.assoc, category.comp_id, ← op_comp] using w _ _ _,
end } }
@[simp]
lemma augment_hom_zero (X : simplicial_object C) (X₀ : C) (f : X _[0] ⟶ X₀) (w) :
(X.augment X₀ f w).hom.app (op [0]) = f :=
by { dsimp, rw [simplex_category.hom_zero_zero ([0].const 0), op_id, X.map_id, category.id_comp] }
end simplicial_object
/-- Cosimplicial objects. -/
@[derive category, nolint has_nonempty_instance]
def cosimplicial_object := simplex_category ⥤ C
namespace cosimplicial_object
localized
"notation X `_[`:1000 n `]` :=
(X : category_theory.cosimplicial_object _).obj (simplex_category.mk n)"
in simplicial
instance {J : Type v} [small_category J] [has_limits_of_shape J C] :
has_limits_of_shape J (cosimplicial_object C) := by {dsimp [cosimplicial_object], apply_instance}
instance [has_limits C] : has_limits (cosimplicial_object C) := ⟨infer_instance⟩
instance {J : Type v} [small_category J] [has_colimits_of_shape J C] :
has_colimits_of_shape J (cosimplicial_object C) :=
by {dsimp [cosimplicial_object], apply_instance}
instance [has_colimits C] : has_colimits (cosimplicial_object C) := ⟨infer_instance⟩
variables {C} (X : cosimplicial_object C)
/-- Coface maps for a cosimplicial object. -/
def δ {n} (i : fin (n+2)) : X _[n] ⟶ X _[n+1] :=
X.map (simplex_category.δ i)
/-- Codegeneracy maps for a cosimplicial object. -/
def σ {n} (i : fin (n+1)) : X _[n+1] ⟶ X _[n] :=
X.map (simplex_category.σ i)
/-- Isomorphisms from identities in ℕ. -/
def eq_to_iso {n m : ℕ} (h : n = m) : X _[n] ≅ X _[m] :=
X.map_iso (eq_to_iso (by rw h))
@[simp] lemma eq_to_iso_refl {n : ℕ} (h : n = n) : X.eq_to_iso h = iso.refl _ :=
by { ext, simp [eq_to_iso], }
/-- The generic case of the first cosimplicial identity -/
lemma δ_comp_δ {n} {i j : fin (n+2)} (H : i ≤ j) :
X.δ i ≫ X.δ j.succ = X.δ j ≫ X.δ i.cast_succ :=
by { dsimp [δ], simp only [←X.map_comp, simplex_category.δ_comp_δ H], }
/-- The special case of the first cosimplicial identity -/
lemma δ_comp_δ_self {n} {i : fin (n+2)} : X.δ i ≫ X.δ i.cast_succ = X.δ i ≫ X.δ i.succ :=
by { dsimp [δ], simp only [←X.map_comp, simplex_category.δ_comp_δ_self] }
/-- The second cosimplicial identity -/
lemma δ_comp_σ_of_le {n} {i : fin (n+2)} {j : fin (n+1)} (H : i ≤ j.cast_succ) :
X.δ i.cast_succ ≫ X.σ j.succ = X.σ j ≫ X.δ i :=
by { dsimp [δ, σ], simp only [←X.map_comp, simplex_category.δ_comp_σ_of_le H] }
/-- The first part of the third cosimplicial identity -/
lemma δ_comp_σ_self {n} {i : fin (n+1)} :
X.δ i.cast_succ ≫ X.σ i = 𝟙 _ :=
begin
dsimp [δ, σ],
simp only [←X.map_comp, simplex_category.δ_comp_σ_self, X.map_id],
end
/-- The second part of the third cosimplicial identity -/
lemma δ_comp_σ_succ {n} {i : fin (n+1)} :
X.δ i.succ ≫ X.σ i = 𝟙 _ :=
begin
dsimp [δ, σ],
simp only [←X.map_comp, simplex_category.δ_comp_σ_succ, X.map_id],
end
/-- The fourth cosimplicial identity -/
lemma δ_comp_σ_of_gt {n} {i : fin (n+2)} {j : fin (n+1)} (H : j.cast_succ < i) :
X.δ i.succ ≫ X.σ j.cast_succ = X.σ j ≫ X.δ i :=
by { dsimp [δ, σ], simp only [←X.map_comp, simplex_category.δ_comp_σ_of_gt H] }
/-- The fifth cosimplicial identity -/
lemma σ_comp_σ {n} {i j : fin (n+1)} (H : i ≤ j) :
X.σ i.cast_succ ≫ X.σ j = X.σ j.succ ≫ X.σ i :=
by { dsimp [δ, σ], simp only [←X.map_comp, simplex_category.σ_comp_σ H] }
variable (C)
/-- Functor composition induces a functor on cosimplicial objects. -/
@[simps]
def whiskering (D : Type*) [category D] :
(C ⥤ D) ⥤ cosimplicial_object C ⥤ cosimplicial_object D :=
whiskering_right _ _ _
/-- Truncated cosimplicial objects. -/
@[derive category, nolint has_nonempty_instance]
def truncated (n : ℕ) := simplex_category.truncated n ⥤ C
variable {C}
namespace truncated
instance {n} {J : Type v} [small_category J] [has_limits_of_shape J C] :
has_limits_of_shape J (cosimplicial_object.truncated C n) :=
by {dsimp [truncated], apply_instance}
instance {n} [has_limits C] : has_limits (cosimplicial_object.truncated C n) := ⟨infer_instance⟩
instance {n} {J : Type v} [small_category J] [has_colimits_of_shape J C] :
has_colimits_of_shape J (cosimplicial_object.truncated C n) :=
by {dsimp [truncated], apply_instance}
instance {n} [has_colimits C] : has_colimits (cosimplicial_object.truncated C n) := ⟨infer_instance⟩
variable (C)
/-- Functor composition induces a functor on truncated cosimplicial objects. -/
@[simps]
def whiskering {n} (D : Type*) [category D] :
(C ⥤ D) ⥤ truncated C n ⥤ truncated D n :=
whiskering_right _ _ _
variable {C}
end truncated
section skeleton
/-- The skeleton functor from cosimplicial objects to truncated cosimplicial objects. -/
def sk (n : ℕ) : cosimplicial_object C ⥤ cosimplicial_object.truncated C n :=
(whiskering_left _ _ _).obj simplex_category.truncated.inclusion
end skeleton
variable (C)
/-- The constant cosimplicial object. -/
abbreviation const : C ⥤ cosimplicial_object C := category_theory.functor.const _
/-- Augmented cosimplicial objects. -/
@[derive category, nolint has_nonempty_instance]
def augmented := comma (const C) (𝟭 (cosimplicial_object C))
variable {C}
namespace augmented
/-- Drop the augmentation. -/
@[simps]
def drop : augmented C ⥤ cosimplicial_object C := comma.snd _ _
/-- The point of the augmentation. -/
@[simps]
def point : augmented C ⥤ C := comma.fst _ _
/-- The functor from augmented objects to arrows. -/
@[simps]
def to_arrow : augmented C ⥤ arrow C :=
{ obj := λ X,
{ left := (point.obj X),
right := (drop.obj X) _[0],
hom := X.hom.app _ },
map := λ X Y η,
{ left := (point.map η),
right := (drop.map η).app _,
w' := begin
dsimp,
rw ← nat_trans.comp_app,
erw ← η.w,
refl,
end } }
variable (C)
/-- Functor composition induces a functor on augmented cosimplicial objects. -/
@[simp]
def whiskering_obj (D : Type*) [category D] (F : C ⥤ D) :
augmented C ⥤ augmented D :=
{ obj := λ X,
{ left := F.obj (point.obj X),
right := ((whiskering _ _).obj F).obj (drop.obj X),
hom := (functor.const_comp _ _ _).inv ≫ whisker_right X.hom F },
map := λ X Y η,
{ left := F.map η.left,
right := whisker_right η.right _,
w' := begin
ext,
dsimp,
rw [category.id_comp, category.id_comp, ← F.map_comp, ← F.map_comp, ← nat_trans.comp_app],
erw ← η.w,
refl,
end } }
/-- Functor composition induces a functor on augmented cosimplicial objects. -/
@[simps]
def whiskering (D : Type u') [category.{v'} D] :
(C ⥤ D) ⥤ augmented C ⥤ augmented D :=
{ obj := whiskering_obj _ _,
map := λ X Y η,
{ app := λ A,
{ left := η.app _,
right := whisker_left _ η,
w' := begin
ext n,
dsimp,
rw [category.id_comp, category.id_comp, η.naturality],
end }, }, }
variable {C}
end augmented
open_locale simplicial
/-- Augment a cosimplicial object with an object. -/
@[simps]
def augment (X : cosimplicial_object C) (X₀ : C) (f : X₀ ⟶ X.obj [0])
(w : ∀ (i : simplex_category) (g₁ g₂ : [0] ⟶ i),
f ≫ X.map g₁ = f ≫ X.map g₂) : cosimplicial_object.augmented C :=
{ left := X₀,
right := X,
hom :=
{ app := λ i, f ≫ X.map (simplex_category.const i 0),
naturality' := begin
intros i j g,
dsimp,
simpa [← X.map_comp] using w _ _ _,
end } }
@[simp]
lemma augment_hom_zero (X : cosimplicial_object C) (X₀ : C) (f : X₀ ⟶ X.obj [0]) (w) :
(X.augment X₀ f w).hom.app [0] = f :=
by { dsimp, rw [simplex_category.hom_zero_zero ([0].const 0), X.map_id, category.comp_id] }
end cosimplicial_object
/-- The anti-equivalence between simplicial objects and cosimplicial objects. -/
@[simps]
def simplicial_cosimplicial_equiv : (simplicial_object C)ᵒᵖ ≌ (cosimplicial_object Cᵒᵖ) :=
functor.left_op_right_op_equiv _ _
/-- The anti-equivalence between cosimplicial objects and simplicial objects. -/
@[simps]
def cosimplicial_simplicial_equiv : (cosimplicial_object C)ᵒᵖ ≌ (simplicial_object Cᵒᵖ) :=
functor.op_unop_equiv _ _
variable {C}
/-- Construct an augmented cosimplicial object in the opposite
category from an augmented simplicial object. -/
@[simps]
def simplicial_object.augmented.right_op (X : simplicial_object.augmented C) :
cosimplicial_object.augmented Cᵒᵖ :=
{ left := opposite.op X.right,
right := X.left.right_op,
hom := X.hom.right_op }
/-- Construct an augmented simplicial object from an augmented cosimplicial
object in the opposite category. -/
@[simps]
def cosimplicial_object.augmented.left_op (X : cosimplicial_object.augmented Cᵒᵖ) :
simplicial_object.augmented C :=
{ left := X.right.left_op,
right := X.left.unop,
hom := X.hom.left_op }
/-- Converting an augmented simplicial object to an augmented cosimplicial
object and back is isomorphic to the given object. -/
@[simps]
def simplicial_object.augmented.right_op_left_op_iso (X : simplicial_object.augmented C) :
X.right_op.left_op ≅ X :=
comma.iso_mk X.left.right_op_left_op_iso (eq_to_iso $ by simp) (by tidy)
/-- Converting an augmented cosimplicial object to an augmented simplicial
object and back is isomorphic to the given object. -/
@[simps]
def cosimplicial_object.augmented.left_op_right_op_iso (X : cosimplicial_object.augmented Cᵒᵖ) :
X.left_op.right_op ≅ X :=
comma.iso_mk (eq_to_iso $ by simp) X.right.left_op_right_op_iso (by tidy)
variable (C)
/-- A functorial version of `simplicial_object.augmented.right_op`. -/
@[simps]
def simplicial_to_cosimplicial_augmented :
(simplicial_object.augmented C)ᵒᵖ ⥤ cosimplicial_object.augmented Cᵒᵖ :=
{ obj := λ X, X.unop.right_op,
map := λ X Y f,
{ left := f.unop.right.op,
right := f.unop.left.right_op,
w' := begin
ext x,
dsimp,
simp_rw ← op_comp,
congr' 1,
exact (congr_app f.unop.w (op x)).symm,
end } }
/-- A functorial version of `cosimplicial_object.augmented.left_op`. -/
@[simps]
def cosimplicial_to_simplicial_augmented :
cosimplicial_object.augmented Cᵒᵖ ⥤ (simplicial_object.augmented C)ᵒᵖ :=
{ obj := λ X, opposite.op X.left_op,
map := λ X Y f, quiver.hom.op $
{ left := f.right.left_op,
right := f.left.unop,
w' := begin
ext x,
dsimp,
simp_rw ← unop_comp,
congr' 1,
exact (congr_app f.w x.unop).symm,
end} }
/-- The contravariant categorical equivalence between augmented simplicial
objects and augmented cosimplicial objects in the opposite category. -/
@[simps]
def simplicial_cosimplicial_augmented_equiv :
(simplicial_object.augmented C)ᵒᵖ ≌ cosimplicial_object.augmented Cᵒᵖ :=
{ functor := simplicial_to_cosimplicial_augmented _,
inverse := cosimplicial_to_simplicial_augmented _,
unit_iso := nat_iso.of_components
(λ X, X.unop.right_op_left_op_iso.op) begin
intros X Y f,
dsimp,
rw (show f = f.unop.op, by simp),
simp_rw ← op_comp,
congr' 1,
tidy,
end,
counit_iso := nat_iso.of_components
(λ X, X.left_op_right_op_iso) (by tidy) }
end category_theory