/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison, Adam Topaz -/ import algebraic_topology.simplex_category import category_theory.arrow import category_theory.limits.functor_category import category_theory.opposites /-! # Simplicial objects in a category. A simplicial object in a category `C` is a `C`-valued presheaf on `simplex_category`. (Similarly a cosimplicial object is functor `simplex_category ⥤ C`.) Use the notation `X _[n]` in the `simplicial` locale to obtain the `n`-th term of a (co)simplicial object `X`, where `n` is a natural number. -/ open opposite open category_theory open category_theory.limits universes v u v' u' namespace category_theory variables (C : Type u) [category.{v} C] /-- The category of simplicial objects valued in a category `C`. This is the category of contravariant functors from `simplex_category` to `C`. -/ @[derive category, nolint has_nonempty_instance] def simplicial_object := simplex_categoryᵒᵖ ⥤ C namespace simplicial_object localized "notation X `_[`:1000 n `]` := (X : category_theory.simplicial_object _).obj (opposite.op (simplex_category.mk n))" in simplicial instance {J : Type v} [small_category J] [has_limits_of_shape J C] : has_limits_of_shape J (simplicial_object C) := by {dsimp [simplicial_object], apply_instance} instance [has_limits C] : has_limits (simplicial_object C) := ⟨infer_instance⟩ instance {J : Type v} [small_category J] [has_colimits_of_shape J C] : has_colimits_of_shape J (simplicial_object C) := by {dsimp [simplicial_object], apply_instance} instance [has_colimits C] : has_colimits (simplicial_object C) := ⟨infer_instance⟩ variables {C} (X : simplicial_object C) /-- Face maps for a simplicial object. -/ def δ {n} (i : fin (n+2)) : X _[n+1] ⟶ X _[n] := X.map (simplex_category.δ i).op /-- Degeneracy maps for a simplicial object. -/ def σ {n} (i : fin (n+1)) : X _[n] ⟶ X _[n+1] := X.map (simplex_category.σ i).op /-- Isomorphisms from identities in ℕ. -/ def eq_to_iso {n m : ℕ} (h : n = m) : X _[n] ≅ X _[m] := X.map_iso (eq_to_iso (by rw h)) @[simp] lemma eq_to_iso_refl {n : ℕ} (h : n = n) : X.eq_to_iso h = iso.refl _ := by { ext, simp [eq_to_iso], } /-- The generic case of the first simplicial identity -/ lemma δ_comp_δ {n} {i j : fin (n+2)} (H : i ≤ j) : X.δ j.succ ≫ X.δ i = X.δ i.cast_succ ≫ X.δ j := by { dsimp [δ], simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_δ H] } /-- The special case of the first simplicial identity -/ lemma δ_comp_δ_self {n} {i : fin (n+2)} : X.δ i.cast_succ ≫ X.δ i = X.δ i.succ ≫ X.δ i := by { dsimp [δ], simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_δ_self] } /-- The second simplicial identity -/ lemma δ_comp_σ_of_le {n} {i : fin (n+2)} {j : fin (n+1)} (H : i ≤ j.cast_succ) : X.σ j.succ ≫ X.δ i.cast_succ = X.δ i ≫ X.σ j := by { dsimp [δ, σ], simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_σ_of_le H] } /-- The first part of the third simplicial identity -/ lemma δ_comp_σ_self {n} {i : fin (n+1)} : X.σ i ≫ X.δ i.cast_succ = 𝟙 _ := begin dsimp [δ, σ], simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_σ_self, op_id, X.map_id], end /-- The second part of the third simplicial identity -/ lemma δ_comp_σ_succ {n} {i : fin (n+1)} : X.σ i ≫ X.δ i.succ = 𝟙 _ := begin dsimp [δ, σ], simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_σ_succ, op_id, X.map_id], end /-- The fourth simplicial identity -/ lemma δ_comp_σ_of_gt {n} {i : fin (n+2)} {j : fin (n+1)} (H : j.cast_succ < i) : X.σ j.cast_succ ≫ X.δ i.succ = X.δ i ≫ X.σ j := by { dsimp [δ, σ], simp only [←X.map_comp, ←op_comp, simplex_category.δ_comp_σ_of_gt H] } /-- The fifth simplicial identity -/ lemma σ_comp_σ {n} {i j : fin (n+1)} (H : i ≤ j) : X.σ j ≫ X.σ i.cast_succ = X.σ i ≫ X.σ j.succ := by { dsimp [δ, σ], simp only [←X.map_comp, ←op_comp, simplex_category.σ_comp_σ H] } variable (C) /-- Functor composition induces a functor on simplicial objects. -/ @[simps] def whiskering (D : Type*) [category D] : (C ⥤ D) ⥤ simplicial_object C ⥤ simplicial_object D := whiskering_right _ _ _ /-- Truncated simplicial objects. -/ @[derive category, nolint has_nonempty_instance] def truncated (n : ℕ) := (simplex_category.truncated n)ᵒᵖ ⥤ C variable {C} namespace truncated instance {n} {J : Type v} [small_category J] [has_limits_of_shape J C] : has_limits_of_shape J (simplicial_object.truncated C n) := by {dsimp [truncated], apply_instance} instance {n} [has_limits C] : has_limits (simplicial_object.truncated C n) := ⟨infer_instance⟩ instance {n} {J : Type v} [small_category J] [has_colimits_of_shape J C] : has_colimits_of_shape J (simplicial_object.truncated C n) := by {dsimp [truncated], apply_instance} instance {n} [has_colimits C] : has_colimits (simplicial_object.truncated C n) := ⟨infer_instance⟩ variable (C) /-- Functor composition induces a functor on truncated simplicial objects. -/ @[simps] def whiskering {n} (D : Type*) [category D] : (C ⥤ D) ⥤ truncated C n ⥤ truncated D n := whiskering_right _ _ _ variable {C} end truncated section skeleton /-- The skeleton functor from simplicial objects to truncated simplicial objects. -/ def sk (n : ℕ) : simplicial_object C ⥤ simplicial_object.truncated C n := (whiskering_left _ _ _).obj simplex_category.truncated.inclusion.op end skeleton variable (C) /-- The constant simplicial object is the constant functor. -/ abbreviation const : C ⥤ simplicial_object C := category_theory.functor.const _ /-- The category of augmented simplicial objects, defined as a comma category. -/ @[derive category, nolint has_nonempty_instance] def augmented := comma (𝟭 (simplicial_object C)) (const C) variable {C} namespace augmented /-- Drop the augmentation. -/ @[simps] def drop : augmented C ⥤ simplicial_object C := comma.fst _ _ /-- The point of the augmentation. -/ @[simps] def point : augmented C ⥤ C := comma.snd _ _ /-- The functor from augmented objects to arrows. -/ @[simps] def to_arrow : augmented C ⥤ arrow C := { obj := λ X, { left := (drop.obj X) _[0], right := (point.obj X), hom := X.hom.app _ }, map := λ X Y η, { left := (drop.map η).app _, right := (point.map η), w' := begin dsimp, rw ← nat_trans.comp_app, erw η.w, refl, end } } variable (C) /-- Functor composition induces a functor on augmented simplicial objects. -/ @[simp] def whiskering_obj (D : Type*) [category D] (F : C ⥤ D) : augmented C ⥤ augmented D := { obj := λ X, { left := ((whiskering _ _).obj F).obj (drop.obj X), right := F.obj (point.obj X), hom := whisker_right X.hom F ≫ (functor.const_comp _ _ _).hom }, map := λ X Y η, { left := whisker_right η.left _, right := F.map η.right, w' := begin ext, dsimp, rw [category.comp_id, category.comp_id, ← F.map_comp, ← F.map_comp, ← nat_trans.comp_app], erw η.w, refl, end } } /-- Functor composition induces a functor on augmented simplicial objects. -/ @[simps] def whiskering (D : Type u') [category.{v'} D] : (C ⥤ D) ⥤ augmented C ⥤ augmented D := { obj := whiskering_obj _ _, map := λ X Y η, { app := λ A, { left := whisker_left _ η, right := η.app _, w' := begin ext n, dsimp, rw [category.comp_id, category.comp_id, η.naturality], end }, }, } variable {C} end augmented open_locale simplicial /-- Aaugment a simplicial object with an object. -/ @[simps] def augment (X : simplicial_object C) (X₀ : C) (f : X _[0] ⟶ X₀) (w : ∀ (i : simplex_category) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f) : simplicial_object.augmented C := { left := X, right := X₀, hom := { app := λ i, X.map (simplex_category.const i.unop 0).op ≫ f, naturality' := begin intros i j g, dsimp, rw ← g.op_unop, simpa only [← X.map_comp, ← category.assoc, category.comp_id, ← op_comp] using w _ _ _, end } } @[simp] lemma augment_hom_zero (X : simplicial_object C) (X₀ : C) (f : X _[0] ⟶ X₀) (w) : (X.augment X₀ f w).hom.app (op [0]) = f := by { dsimp, rw [simplex_category.hom_zero_zero ([0].const 0), op_id, X.map_id, category.id_comp] } end simplicial_object /-- Cosimplicial objects. -/ @[derive category, nolint has_nonempty_instance] def cosimplicial_object := simplex_category ⥤ C namespace cosimplicial_object localized "notation X `_[`:1000 n `]` := (X : category_theory.cosimplicial_object _).obj (simplex_category.mk n)" in simplicial instance {J : Type v} [small_category J] [has_limits_of_shape J C] : has_limits_of_shape J (cosimplicial_object C) := by {dsimp [cosimplicial_object], apply_instance} instance [has_limits C] : has_limits (cosimplicial_object C) := ⟨infer_instance⟩ instance {J : Type v} [small_category J] [has_colimits_of_shape J C] : has_colimits_of_shape J (cosimplicial_object C) := by {dsimp [cosimplicial_object], apply_instance} instance [has_colimits C] : has_colimits (cosimplicial_object C) := ⟨infer_instance⟩ variables {C} (X : cosimplicial_object C) /-- Coface maps for a cosimplicial object. -/ def δ {n} (i : fin (n+2)) : X _[n] ⟶ X _[n+1] := X.map (simplex_category.δ i) /-- Codegeneracy maps for a cosimplicial object. -/ def σ {n} (i : fin (n+1)) : X _[n+1] ⟶ X _[n] := X.map (simplex_category.σ i) /-- Isomorphisms from identities in ℕ. -/ def eq_to_iso {n m : ℕ} (h : n = m) : X _[n] ≅ X _[m] := X.map_iso (eq_to_iso (by rw h)) @[simp] lemma eq_to_iso_refl {n : ℕ} (h : n = n) : X.eq_to_iso h = iso.refl _ := by { ext, simp [eq_to_iso], } /-- The generic case of the first cosimplicial identity -/ lemma δ_comp_δ {n} {i j : fin (n+2)} (H : i ≤ j) : X.δ i ≫ X.δ j.succ = X.δ j ≫ X.δ i.cast_succ := by { dsimp [δ], simp only [←X.map_comp, simplex_category.δ_comp_δ H], } /-- The special case of the first cosimplicial identity -/ lemma δ_comp_δ_self {n} {i : fin (n+2)} : X.δ i ≫ X.δ i.cast_succ = X.δ i ≫ X.δ i.succ := by { dsimp [δ], simp only [←X.map_comp, simplex_category.δ_comp_δ_self] } /-- The second cosimplicial identity -/ lemma δ_comp_σ_of_le {n} {i : fin (n+2)} {j : fin (n+1)} (H : i ≤ j.cast_succ) : X.δ i.cast_succ ≫ X.σ j.succ = X.σ j ≫ X.δ i := by { dsimp [δ, σ], simp only [←X.map_comp, simplex_category.δ_comp_σ_of_le H] } /-- The first part of the third cosimplicial identity -/ lemma δ_comp_σ_self {n} {i : fin (n+1)} : X.δ i.cast_succ ≫ X.σ i = 𝟙 _ := begin dsimp [δ, σ], simp only [←X.map_comp, simplex_category.δ_comp_σ_self, X.map_id], end /-- The second part of the third cosimplicial identity -/ lemma δ_comp_σ_succ {n} {i : fin (n+1)} : X.δ i.succ ≫ X.σ i = 𝟙 _ := begin dsimp [δ, σ], simp only [←X.map_comp, simplex_category.δ_comp_σ_succ, X.map_id], end /-- The fourth cosimplicial identity -/ lemma δ_comp_σ_of_gt {n} {i : fin (n+2)} {j : fin (n+1)} (H : j.cast_succ < i) : X.δ i.succ ≫ X.σ j.cast_succ = X.σ j ≫ X.δ i := by { dsimp [δ, σ], simp only [←X.map_comp, simplex_category.δ_comp_σ_of_gt H] } /-- The fifth cosimplicial identity -/ lemma σ_comp_σ {n} {i j : fin (n+1)} (H : i ≤ j) : X.σ i.cast_succ ≫ X.σ j = X.σ j.succ ≫ X.σ i := by { dsimp [δ, σ], simp only [←X.map_comp, simplex_category.σ_comp_σ H] } variable (C) /-- Functor composition induces a functor on cosimplicial objects. -/ @[simps] def whiskering (D : Type*) [category D] : (C ⥤ D) ⥤ cosimplicial_object C ⥤ cosimplicial_object D := whiskering_right _ _ _ /-- Truncated cosimplicial objects. -/ @[derive category, nolint has_nonempty_instance] def truncated (n : ℕ) := simplex_category.truncated n ⥤ C variable {C} namespace truncated instance {n} {J : Type v} [small_category J] [has_limits_of_shape J C] : has_limits_of_shape J (cosimplicial_object.truncated C n) := by {dsimp [truncated], apply_instance} instance {n} [has_limits C] : has_limits (cosimplicial_object.truncated C n) := ⟨infer_instance⟩ instance {n} {J : Type v} [small_category J] [has_colimits_of_shape J C] : has_colimits_of_shape J (cosimplicial_object.truncated C n) := by {dsimp [truncated], apply_instance} instance {n} [has_colimits C] : has_colimits (cosimplicial_object.truncated C n) := ⟨infer_instance⟩ variable (C) /-- Functor composition induces a functor on truncated cosimplicial objects. -/ @[simps] def whiskering {n} (D : Type*) [category D] : (C ⥤ D) ⥤ truncated C n ⥤ truncated D n := whiskering_right _ _ _ variable {C} end truncated section skeleton /-- The skeleton functor from cosimplicial objects to truncated cosimplicial objects. -/ def sk (n : ℕ) : cosimplicial_object C ⥤ cosimplicial_object.truncated C n := (whiskering_left _ _ _).obj simplex_category.truncated.inclusion end skeleton variable (C) /-- The constant cosimplicial object. -/ abbreviation const : C ⥤ cosimplicial_object C := category_theory.functor.const _ /-- Augmented cosimplicial objects. -/ @[derive category, nolint has_nonempty_instance] def augmented := comma (const C) (𝟭 (cosimplicial_object C)) variable {C} namespace augmented /-- Drop the augmentation. -/ @[simps] def drop : augmented C ⥤ cosimplicial_object C := comma.snd _ _ /-- The point of the augmentation. -/ @[simps] def point : augmented C ⥤ C := comma.fst _ _ /-- The functor from augmented objects to arrows. -/ @[simps] def to_arrow : augmented C ⥤ arrow C := { obj := λ X, { left := (point.obj X), right := (drop.obj X) _[0], hom := X.hom.app _ }, map := λ X Y η, { left := (point.map η), right := (drop.map η).app _, w' := begin dsimp, rw ← nat_trans.comp_app, erw ← η.w, refl, end } } variable (C) /-- Functor composition induces a functor on augmented cosimplicial objects. -/ @[simp] def whiskering_obj (D : Type*) [category D] (F : C ⥤ D) : augmented C ⥤ augmented D := { obj := λ X, { left := F.obj (point.obj X), right := ((whiskering _ _).obj F).obj (drop.obj X), hom := (functor.const_comp _ _ _).inv ≫ whisker_right X.hom F }, map := λ X Y η, { left := F.map η.left, right := whisker_right η.right _, w' := begin ext, dsimp, rw [category.id_comp, category.id_comp, ← F.map_comp, ← F.map_comp, ← nat_trans.comp_app], erw ← η.w, refl, end } } /-- Functor composition induces a functor on augmented cosimplicial objects. -/ @[simps] def whiskering (D : Type u') [category.{v'} D] : (C ⥤ D) ⥤ augmented C ⥤ augmented D := { obj := whiskering_obj _ _, map := λ X Y η, { app := λ A, { left := η.app _, right := whisker_left _ η, w' := begin ext n, dsimp, rw [category.id_comp, category.id_comp, η.naturality], end }, }, } variable {C} end augmented open_locale simplicial /-- Augment a cosimplicial object with an object. -/ @[simps] def augment (X : cosimplicial_object C) (X₀ : C) (f : X₀ ⟶ X.obj [0]) (w : ∀ (i : simplex_category) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂) : cosimplicial_object.augmented C := { left := X₀, right := X, hom := { app := λ i, f ≫ X.map (simplex_category.const i 0), naturality' := begin intros i j g, dsimp, simpa [← X.map_comp] using w _ _ _, end } } @[simp] lemma augment_hom_zero (X : cosimplicial_object C) (X₀ : C) (f : X₀ ⟶ X.obj [0]) (w) : (X.augment X₀ f w).hom.app [0] = f := by { dsimp, rw [simplex_category.hom_zero_zero ([0].const 0), X.map_id, category.comp_id] } end cosimplicial_object /-- The anti-equivalence between simplicial objects and cosimplicial objects. -/ @[simps] def simplicial_cosimplicial_equiv : (simplicial_object C)ᵒᵖ ≌ (cosimplicial_object Cᵒᵖ) := functor.left_op_right_op_equiv _ _ /-- The anti-equivalence between cosimplicial objects and simplicial objects. -/ @[simps] def cosimplicial_simplicial_equiv : (cosimplicial_object C)ᵒᵖ ≌ (simplicial_object Cᵒᵖ) := functor.op_unop_equiv _ _ variable {C} /-- Construct an augmented cosimplicial object in the opposite category from an augmented simplicial object. -/ @[simps] def simplicial_object.augmented.right_op (X : simplicial_object.augmented C) : cosimplicial_object.augmented Cᵒᵖ := { left := opposite.op X.right, right := X.left.right_op, hom := X.hom.right_op } /-- Construct an augmented simplicial object from an augmented cosimplicial object in the opposite category. -/ @[simps] def cosimplicial_object.augmented.left_op (X : cosimplicial_object.augmented Cᵒᵖ) : simplicial_object.augmented C := { left := X.right.left_op, right := X.left.unop, hom := X.hom.left_op } /-- Converting an augmented simplicial object to an augmented cosimplicial object and back is isomorphic to the given object. -/ @[simps] def simplicial_object.augmented.right_op_left_op_iso (X : simplicial_object.augmented C) : X.right_op.left_op ≅ X := comma.iso_mk X.left.right_op_left_op_iso (eq_to_iso $ by simp) (by tidy) /-- Converting an augmented cosimplicial object to an augmented simplicial object and back is isomorphic to the given object. -/ @[simps] def cosimplicial_object.augmented.left_op_right_op_iso (X : cosimplicial_object.augmented Cᵒᵖ) : X.left_op.right_op ≅ X := comma.iso_mk (eq_to_iso $ by simp) X.right.left_op_right_op_iso (by tidy) variable (C) /-- A functorial version of `simplicial_object.augmented.right_op`. -/ @[simps] def simplicial_to_cosimplicial_augmented : (simplicial_object.augmented C)ᵒᵖ ⥤ cosimplicial_object.augmented Cᵒᵖ := { obj := λ X, X.unop.right_op, map := λ X Y f, { left := f.unop.right.op, right := f.unop.left.right_op, w' := begin ext x, dsimp, simp_rw ← op_comp, congr' 1, exact (congr_app f.unop.w (op x)).symm, end } } /-- A functorial version of `cosimplicial_object.augmented.left_op`. -/ @[simps] def cosimplicial_to_simplicial_augmented : cosimplicial_object.augmented Cᵒᵖ ⥤ (simplicial_object.augmented C)ᵒᵖ := { obj := λ X, opposite.op X.left_op, map := λ X Y f, quiver.hom.op $ { left := f.right.left_op, right := f.left.unop, w' := begin ext x, dsimp, simp_rw ← unop_comp, congr' 1, exact (congr_app f.w x.unop).symm, end} } /-- The contravariant categorical equivalence between augmented simplicial objects and augmented cosimplicial objects in the opposite category. -/ @[simps] def simplicial_cosimplicial_augmented_equiv : (simplicial_object.augmented C)ᵒᵖ ≌ cosimplicial_object.augmented Cᵒᵖ := { functor := simplicial_to_cosimplicial_augmented _, inverse := cosimplicial_to_simplicial_augmented _, unit_iso := nat_iso.of_components (λ X, X.unop.right_op_left_op_iso.op) begin intros X Y f, dsimp, rw (show f = f.unop.op, by simp), simp_rw ← op_comp, congr' 1, tidy, end, counit_iso := nat_iso.of_components (λ X, X.left_op_right_op_iso) (by tidy) } end category_theory