Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Adam Topaz. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Adam Topaz | |
-/ | |
import algebraic_topology.simplicial_object | |
import category_theory.limits.shapes.wide_pullbacks | |
import category_theory.arrow | |
/-! | |
# The Čech Nerve | |
This file provides a definition of the Čech nerve associated to an arrow, provided | |
the base category has the correct wide pullbacks. | |
Several variants are provided, given `f : arrow C`: | |
1. `f.cech_nerve` is the Čech nerve, considered as a simplicial object in `C`. | |
2. `f.augmented_cech_nerve` is the augmented Čech nerve, considered as an | |
augmented simplicial object in `C`. | |
3. `simplicial_object.cech_nerve` and `simplicial_object.augmented_cech_nerve` are | |
functorial versions of 1 resp. 2. | |
-/ | |
open category_theory | |
open category_theory.limits | |
noncomputable theory | |
universes v u | |
variables {C : Type u} [category.{v} C] | |
namespace category_theory.arrow | |
variables (f : arrow C) | |
variables [∀ n : ℕ, has_wide_pullback.{0} f.right (λ i : fin (n+1), f.left) (λ i, f.hom)] | |
/-- The Čech nerve associated to an arrow. -/ | |
@[simps] | |
def cech_nerve : simplicial_object C := | |
{ obj := λ n, wide_pullback.{0} f.right | |
(λ i : fin (n.unop.len + 1), f.left) (λ i, f.hom), | |
map := λ m n g, wide_pullback.lift (wide_pullback.base _) | |
(λ i, wide_pullback.π (λ i, f.hom) $ g.unop.to_order_hom i) $ λ j, by simp, | |
map_id' := λ x, by { ext ⟨⟩, { simpa }, { simp } }, | |
map_comp' := λ x y z f g, by { ext ⟨⟩, { simpa }, { simp } } } | |
/-- The morphism between Čech nerves associated to a morphism of arrows. -/ | |
@[simps] | |
def map_cech_nerve {f g : arrow C} | |
[∀ n : ℕ, has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)] | |
[∀ n : ℕ, has_wide_pullback g.right (λ i : fin (n+1), g.left) (λ i, g.hom)] | |
(F : f ⟶ g) : f.cech_nerve ⟶ g.cech_nerve := | |
{ app := λ n, wide_pullback.lift (wide_pullback.base _ ≫ F.right) | |
(λ i, wide_pullback.π _ i ≫ F.left) $ λ j, by simp, | |
naturality' := λ x y f, by { ext ⟨⟩, { simp }, { simp } } } | |
/-- The augmented Čech nerve associated to an arrow. -/ | |
@[simps] | |
def augmented_cech_nerve : simplicial_object.augmented C := | |
{ left := f.cech_nerve, | |
right := f.right, | |
hom := | |
{ app := λ i, wide_pullback.base _, | |
naturality' := λ x y f, by { dsimp, simp } } } | |
/-- The morphism between augmented Čech nerve associated to a morphism of arrows. -/ | |
@[simps] | |
def map_augmented_cech_nerve {f g : arrow C} | |
[∀ n : ℕ, has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)] | |
[∀ n : ℕ, has_wide_pullback g.right (λ i : fin (n+1), g.left) (λ i, g.hom)] | |
(F : f ⟶ g) : f.augmented_cech_nerve ⟶ g.augmented_cech_nerve := | |
{ left := map_cech_nerve F, | |
right := F.right, | |
w' := by { ext, simp } } | |
end category_theory.arrow | |
namespace category_theory | |
namespace simplicial_object | |
variables [∀ (n : ℕ) (f : arrow C), | |
has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)] | |
/-- The Čech nerve construction, as a functor from `arrow C`. -/ | |
@[simps] | |
def cech_nerve : arrow C ⥤ simplicial_object C := | |
{ obj := λ f, f.cech_nerve, | |
map := λ f g F, arrow.map_cech_nerve F, | |
map_id' := λ i, by { ext, { simp }, { simp } }, | |
map_comp' := λ x y z f g, by { ext, { simp }, { simp } } } | |
/-- The augmented Čech nerve construction, as a functor from `arrow C`. -/ | |
@[simps] | |
def augmented_cech_nerve : arrow C ⥤ simplicial_object.augmented C := | |
{ obj := λ f, f.augmented_cech_nerve, | |
map := λ f g F, arrow.map_augmented_cech_nerve F, | |
map_id' := λ x, by { ext, { simp }, { simp }, { refl } }, | |
map_comp' := λ x y z f g, by { ext, { simp }, { simp }, { refl } } } | |
/-- A helper function used in defining the Čech adjunction. -/ | |
@[simps] | |
def equivalence_right_to_left (X : simplicial_object.augmented C) (F : arrow C) | |
(G : X ⟶ F.augmented_cech_nerve) : augmented.to_arrow.obj X ⟶ F := | |
{ left := G.left.app _ ≫ wide_pullback.π (λ i, F.hom) 0, | |
right := G.right, | |
w' := begin | |
have := G.w, | |
apply_fun (λ e, e.app (opposite.op $ simplex_category.mk 0)) at this, | |
simpa using this, | |
end } | |
/-- A helper function used in defining the Čech adjunction. -/ | |
@[simps] | |
def equivalence_left_to_right (X : simplicial_object.augmented C) (F : arrow C) | |
(G : augmented.to_arrow.obj X ⟶ F) : X ⟶ F.augmented_cech_nerve := | |
{ left := | |
{ app := λ x, limits.wide_pullback.lift (X.hom.app _ ≫ G.right) | |
(λ i, X.left.map (simplex_category.const x.unop i).op ≫ G.left) | |
(λ i, by { dsimp, erw [category.assoc, arrow.w, | |
augmented.to_arrow_obj_hom, nat_trans.naturality_assoc, | |
functor.const_obj_map, category.id_comp] } ), | |
naturality' := begin | |
intros x y f, | |
ext, | |
{ dsimp, | |
simp only [wide_pullback.lift_π, category.assoc], | |
rw [← category.assoc, ← X.left.map_comp], | |
refl }, | |
{ dsimp, | |
simp only [functor.const_obj_map, nat_trans.naturality_assoc, | |
wide_pullback.lift_base, category.assoc], | |
erw category.id_comp } | |
end }, | |
right := G.right, | |
w' := by { ext, dsimp, simp } } | |
/-- A helper function used in defining the Čech adjunction. -/ | |
@[simps] | |
def cech_nerve_equiv (X : simplicial_object.augmented C) (F : arrow C) : | |
(augmented.to_arrow.obj X ⟶ F) ≃ (X ⟶ F.augmented_cech_nerve) := | |
{ to_fun := equivalence_left_to_right _ _, | |
inv_fun := equivalence_right_to_left _ _, | |
left_inv := begin | |
intro A, | |
dsimp, | |
ext, | |
{ dsimp, | |
erw wide_pullback.lift_π, | |
nth_rewrite 1 ← category.id_comp A.left, | |
congr' 1, | |
convert X.left.map_id _, | |
rw ← op_id, | |
congr' 1, | |
ext ⟨a,ha⟩, | |
change a < 1 at ha, | |
change 0 = a, | |
linarith }, | |
{ refl, } | |
end, | |
right_inv := begin | |
intro A, | |
ext _ ⟨j⟩, | |
{ dsimp, | |
simp only [arrow.cech_nerve_map, wide_pullback.lift_π, nat_trans.naturality_assoc], | |
erw wide_pullback.lift_π, | |
refl }, | |
{ erw wide_pullback.lift_base, | |
have := A.w, | |
apply_fun (λ e, e.app x) at this, | |
rw nat_trans.comp_app at this, | |
erw this, | |
refl }, | |
{ refl } | |
end } | |
/-- The augmented Čech nerve construction is right adjoint to the `to_arrow` functor. -/ | |
abbreviation cech_nerve_adjunction : | |
(augmented.to_arrow : _ ⥤ arrow C) ⊣ augmented_cech_nerve := | |
adjunction.mk_of_hom_equiv | |
{ hom_equiv := cech_nerve_equiv, | |
hom_equiv_naturality_left_symm' := λ x y f g h, by { ext, { simp }, { simp } }, | |
hom_equiv_naturality_right' := λ x y f g h, by { ext, { simp }, { simp }, { refl } } } | |
end simplicial_object | |
end category_theory | |
namespace category_theory.arrow | |
variables (f : arrow C) | |
variables [∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)] | |
/-- The Čech conerve associated to an arrow. -/ | |
@[simps] | |
def cech_conerve : cosimplicial_object C := | |
{ obj := λ n, wide_pushout f.left | |
(λ i : fin (n.len + 1), f.right) (λ i, f.hom), | |
map := λ m n g, wide_pushout.desc (wide_pushout.head _) | |
(λ i, wide_pushout.ι (λ i, f.hom) $ g.to_order_hom i) $ | |
λ i, by { rw [wide_pushout.arrow_ι (λ i, f.hom)] }, | |
map_id' := λ x, by { ext ⟨⟩, { simpa }, { simp } }, | |
map_comp' := λ x y z f g, by { ext ⟨⟩, { simpa }, { simp } } } | |
/-- The morphism between Čech conerves associated to a morphism of arrows. -/ | |
@[simps] | |
def map_cech_conerve {f g : arrow C} | |
[∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)] | |
[∀ n : ℕ, has_wide_pushout g.left (λ i : fin (n+1), g.right) (λ i, g.hom)] | |
(F : f ⟶ g) : f.cech_conerve ⟶ g.cech_conerve := | |
{ app := λ n, wide_pushout.desc (F.left ≫ wide_pushout.head _) | |
(λ i, F.right ≫ wide_pushout.ι _ i) $ | |
λ i, by { rw [← arrow.w_assoc F, wide_pushout.arrow_ι (λ i, g.hom)] }, | |
naturality' := λ x y f, by { ext, { simp }, { simp } } } | |
/-- The augmented Čech conerve associated to an arrow. -/ | |
@[simps] | |
def augmented_cech_conerve : cosimplicial_object.augmented C := | |
{ left := f.left, | |
right := f.cech_conerve, | |
hom := | |
{ app := λ i, wide_pushout.head _, | |
naturality' := λ x y f, by { dsimp, simp } } } | |
/-- The morphism between augmented Čech conerves associated to a morphism of arrows. -/ | |
@[simps] | |
def map_augmented_cech_conerve {f g : arrow C} | |
[∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)] | |
[∀ n : ℕ, has_wide_pushout g.left (λ i : fin (n+1), g.right) (λ i, g.hom)] | |
(F : f ⟶ g) : f.augmented_cech_conerve ⟶ g.augmented_cech_conerve := | |
{ left := F.left, | |
right := map_cech_conerve F, | |
w' := by { ext, simp } } | |
end category_theory.arrow | |
namespace category_theory | |
namespace cosimplicial_object | |
variables [∀ (n : ℕ) (f : arrow C), | |
has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)] | |
/-- The Čech conerve construction, as a functor from `arrow C`. -/ | |
@[simps] | |
def cech_conerve : arrow C ⥤ cosimplicial_object C := | |
{ obj := λ f, f.cech_conerve, | |
map := λ f g F, arrow.map_cech_conerve F, | |
map_id' := λ i, by { ext, { dsimp, simp }, { dsimp, simp } }, | |
map_comp' := λ f g h F G, by { ext, { simp }, { simp } } } | |
/-- The augmented Čech conerve construction, as a functor from `arrow C`. -/ | |
@[simps] | |
def augmented_cech_conerve : arrow C ⥤ cosimplicial_object.augmented C := | |
{ obj := λ f, f.augmented_cech_conerve, | |
map := λ f g F, arrow.map_augmented_cech_conerve F, | |
map_id' := λ f, by { ext, { refl }, { dsimp, simp }, { dsimp, simp } }, | |
map_comp' := λ f g h F G, by { ext, { refl }, { simp }, { simp } } } | |
/-- A helper function used in defining the Čech conerve adjunction. -/ | |
@[simps] | |
def equivalence_left_to_right (F : arrow C) (X : cosimplicial_object.augmented C) | |
(G : F.augmented_cech_conerve ⟶ X) : F ⟶ augmented.to_arrow.obj X := | |
{ left := G.left, | |
right := | |
(wide_pushout.ι (λ i, F.hom) 0 ≫ G.right.app (simplex_category.mk 0) : _), | |
w' := begin | |
have := G.w, | |
apply_fun (λ e, e.app (simplex_category.mk 0)) at this, | |
simpa only [category_theory.functor.id_map, augmented.to_arrow_obj_hom, | |
wide_pushout.arrow_ι_assoc (λ i, F.hom)], | |
end } | |
/-- A helper function used in defining the Čech conerve adjunction. -/ | |
@[simps] | |
def equivalence_right_to_left (F : arrow C) (X : cosimplicial_object.augmented C) | |
(G : F ⟶ augmented.to_arrow.obj X) : F.augmented_cech_conerve ⟶ X := | |
{ left := G.left, | |
right := { app := λ x, limits.wide_pushout.desc (G.left ≫ X.hom.app _) | |
(λ i, G.right ≫ X.right.map (simplex_category.const x i)) | |
begin | |
rintros j, | |
rw ← arrow.w_assoc G, | |
have t := X.hom.naturality (x.const j), | |
dsimp at t ⊢, | |
simp only [category.id_comp] at t, | |
rw ← t, | |
end, | |
naturality' := begin | |
intros x y f, | |
ext, | |
{ dsimp, | |
simp only [wide_pushout.ι_desc_assoc, wide_pushout.ι_desc], | |
rw [category.assoc, ←X.right.map_comp], | |
refl }, | |
{ dsimp, | |
simp only [functor.const_obj_map, ←nat_trans.naturality, | |
wide_pushout.head_desc_assoc, wide_pushout.head_desc, category.assoc], | |
erw category.id_comp } | |
end }, | |
w' := by { ext, simp } } | |
/-- A helper function used in defining the Čech conerve adjunction. -/ | |
@[simps] | |
def cech_conerve_equiv (F : arrow C) (X : cosimplicial_object.augmented C) : | |
(F.augmented_cech_conerve ⟶ X) ≃ (F ⟶ augmented.to_arrow.obj X) := | |
{ to_fun := equivalence_left_to_right _ _, | |
inv_fun := equivalence_right_to_left _ _, | |
left_inv := begin | |
intro A, | |
dsimp, | |
ext _, { refl }, ext _ ⟨⟩, -- A bug in the `ext` tactic? | |
{ dsimp, | |
simp only [arrow.cech_conerve_map, wide_pushout.ι_desc, category.assoc, | |
← nat_trans.naturality, wide_pushout.ι_desc_assoc], | |
refl }, | |
{ erw wide_pushout.head_desc, | |
have := A.w, | |
apply_fun (λ e, e.app x) at this, | |
rw nat_trans.comp_app at this, | |
erw this, | |
refl }, | |
end, | |
right_inv := begin | |
intro A, | |
ext, | |
{ refl, }, | |
{ dsimp, | |
erw wide_pushout.ι_desc, | |
nth_rewrite 1 ← category.comp_id A.right, | |
congr' 1, | |
convert X.right.map_id _, | |
ext ⟨a,ha⟩, | |
change a < 1 at ha, | |
change 0 = a, | |
linarith }, | |
end } | |
/-- The augmented Čech conerve construction is left adjoint to the `to_arrow` functor. -/ | |
abbreviation cech_conerve_adjunction : | |
augmented_cech_conerve ⊣ (augmented.to_arrow : _ ⥤ arrow C) := | |
adjunction.mk_of_hom_equiv | |
{ hom_equiv := cech_conerve_equiv, | |
hom_equiv_naturality_left_symm' := λ x y f g h, by { ext, { refl }, { simp }, { simp } }, | |
hom_equiv_naturality_right' := λ x y f g h, by { ext, { simp }, { simp } } } | |
end cosimplicial_object | |
end category_theory | |