/- Copyright (c) 2021 Adam Topaz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Adam Topaz -/ import algebraic_topology.simplicial_object import category_theory.limits.shapes.wide_pullbacks import category_theory.arrow /-! # The Čech Nerve This file provides a definition of the Čech nerve associated to an arrow, provided the base category has the correct wide pullbacks. Several variants are provided, given `f : arrow C`: 1. `f.cech_nerve` is the Čech nerve, considered as a simplicial object in `C`. 2. `f.augmented_cech_nerve` is the augmented Čech nerve, considered as an augmented simplicial object in `C`. 3. `simplicial_object.cech_nerve` and `simplicial_object.augmented_cech_nerve` are functorial versions of 1 resp. 2. -/ open category_theory open category_theory.limits noncomputable theory universes v u variables {C : Type u} [category.{v} C] namespace category_theory.arrow variables (f : arrow C) variables [∀ n : ℕ, has_wide_pullback.{0} f.right (λ i : fin (n+1), f.left) (λ i, f.hom)] /-- The Čech nerve associated to an arrow. -/ @[simps] def cech_nerve : simplicial_object C := { obj := λ n, wide_pullback.{0} f.right (λ i : fin (n.unop.len + 1), f.left) (λ i, f.hom), map := λ m n g, wide_pullback.lift (wide_pullback.base _) (λ i, wide_pullback.π (λ i, f.hom) $ g.unop.to_order_hom i) $ λ j, by simp, map_id' := λ x, by { ext ⟨⟩, { simpa }, { simp } }, map_comp' := λ x y z f g, by { ext ⟨⟩, { simpa }, { simp } } } /-- The morphism between Čech nerves associated to a morphism of arrows. -/ @[simps] def map_cech_nerve {f g : arrow C} [∀ n : ℕ, has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)] [∀ n : ℕ, has_wide_pullback g.right (λ i : fin (n+1), g.left) (λ i, g.hom)] (F : f ⟶ g) : f.cech_nerve ⟶ g.cech_nerve := { app := λ n, wide_pullback.lift (wide_pullback.base _ ≫ F.right) (λ i, wide_pullback.π _ i ≫ F.left) $ λ j, by simp, naturality' := λ x y f, by { ext ⟨⟩, { simp }, { simp } } } /-- The augmented Čech nerve associated to an arrow. -/ @[simps] def augmented_cech_nerve : simplicial_object.augmented C := { left := f.cech_nerve, right := f.right, hom := { app := λ i, wide_pullback.base _, naturality' := λ x y f, by { dsimp, simp } } } /-- The morphism between augmented Čech nerve associated to a morphism of arrows. -/ @[simps] def map_augmented_cech_nerve {f g : arrow C} [∀ n : ℕ, has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)] [∀ n : ℕ, has_wide_pullback g.right (λ i : fin (n+1), g.left) (λ i, g.hom)] (F : f ⟶ g) : f.augmented_cech_nerve ⟶ g.augmented_cech_nerve := { left := map_cech_nerve F, right := F.right, w' := by { ext, simp } } end category_theory.arrow namespace category_theory namespace simplicial_object variables [∀ (n : ℕ) (f : arrow C), has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)] /-- The Čech nerve construction, as a functor from `arrow C`. -/ @[simps] def cech_nerve : arrow C ⥤ simplicial_object C := { obj := λ f, f.cech_nerve, map := λ f g F, arrow.map_cech_nerve F, map_id' := λ i, by { ext, { simp }, { simp } }, map_comp' := λ x y z f g, by { ext, { simp }, { simp } } } /-- The augmented Čech nerve construction, as a functor from `arrow C`. -/ @[simps] def augmented_cech_nerve : arrow C ⥤ simplicial_object.augmented C := { obj := λ f, f.augmented_cech_nerve, map := λ f g F, arrow.map_augmented_cech_nerve F, map_id' := λ x, by { ext, { simp }, { simp }, { refl } }, map_comp' := λ x y z f g, by { ext, { simp }, { simp }, { refl } } } /-- A helper function used in defining the Čech adjunction. -/ @[simps] def equivalence_right_to_left (X : simplicial_object.augmented C) (F : arrow C) (G : X ⟶ F.augmented_cech_nerve) : augmented.to_arrow.obj X ⟶ F := { left := G.left.app _ ≫ wide_pullback.π (λ i, F.hom) 0, right := G.right, w' := begin have := G.w, apply_fun (λ e, e.app (opposite.op $ simplex_category.mk 0)) at this, simpa using this, end } /-- A helper function used in defining the Čech adjunction. -/ @[simps] def equivalence_left_to_right (X : simplicial_object.augmented C) (F : arrow C) (G : augmented.to_arrow.obj X ⟶ F) : X ⟶ F.augmented_cech_nerve := { left := { app := λ x, limits.wide_pullback.lift (X.hom.app _ ≫ G.right) (λ i, X.left.map (simplex_category.const x.unop i).op ≫ G.left) (λ i, by { dsimp, erw [category.assoc, arrow.w, augmented.to_arrow_obj_hom, nat_trans.naturality_assoc, functor.const_obj_map, category.id_comp] } ), naturality' := begin intros x y f, ext, { dsimp, simp only [wide_pullback.lift_π, category.assoc], rw [← category.assoc, ← X.left.map_comp], refl }, { dsimp, simp only [functor.const_obj_map, nat_trans.naturality_assoc, wide_pullback.lift_base, category.assoc], erw category.id_comp } end }, right := G.right, w' := by { ext, dsimp, simp } } /-- A helper function used in defining the Čech adjunction. -/ @[simps] def cech_nerve_equiv (X : simplicial_object.augmented C) (F : arrow C) : (augmented.to_arrow.obj X ⟶ F) ≃ (X ⟶ F.augmented_cech_nerve) := { to_fun := equivalence_left_to_right _ _, inv_fun := equivalence_right_to_left _ _, left_inv := begin intro A, dsimp, ext, { dsimp, erw wide_pullback.lift_π, nth_rewrite 1 ← category.id_comp A.left, congr' 1, convert X.left.map_id _, rw ← op_id, congr' 1, ext ⟨a,ha⟩, change a < 1 at ha, change 0 = a, linarith }, { refl, } end, right_inv := begin intro A, ext _ ⟨j⟩, { dsimp, simp only [arrow.cech_nerve_map, wide_pullback.lift_π, nat_trans.naturality_assoc], erw wide_pullback.lift_π, refl }, { erw wide_pullback.lift_base, have := A.w, apply_fun (λ e, e.app x) at this, rw nat_trans.comp_app at this, erw this, refl }, { refl } end } /-- The augmented Čech nerve construction is right adjoint to the `to_arrow` functor. -/ abbreviation cech_nerve_adjunction : (augmented.to_arrow : _ ⥤ arrow C) ⊣ augmented_cech_nerve := adjunction.mk_of_hom_equiv { hom_equiv := cech_nerve_equiv, hom_equiv_naturality_left_symm' := λ x y f g h, by { ext, { simp }, { simp } }, hom_equiv_naturality_right' := λ x y f g h, by { ext, { simp }, { simp }, { refl } } } end simplicial_object end category_theory namespace category_theory.arrow variables (f : arrow C) variables [∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)] /-- The Čech conerve associated to an arrow. -/ @[simps] def cech_conerve : cosimplicial_object C := { obj := λ n, wide_pushout f.left (λ i : fin (n.len + 1), f.right) (λ i, f.hom), map := λ m n g, wide_pushout.desc (wide_pushout.head _) (λ i, wide_pushout.ι (λ i, f.hom) $ g.to_order_hom i) $ λ i, by { rw [wide_pushout.arrow_ι (λ i, f.hom)] }, map_id' := λ x, by { ext ⟨⟩, { simpa }, { simp } }, map_comp' := λ x y z f g, by { ext ⟨⟩, { simpa }, { simp } } } /-- The morphism between Čech conerves associated to a morphism of arrows. -/ @[simps] def map_cech_conerve {f g : arrow C} [∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)] [∀ n : ℕ, has_wide_pushout g.left (λ i : fin (n+1), g.right) (λ i, g.hom)] (F : f ⟶ g) : f.cech_conerve ⟶ g.cech_conerve := { app := λ n, wide_pushout.desc (F.left ≫ wide_pushout.head _) (λ i, F.right ≫ wide_pushout.ι _ i) $ λ i, by { rw [← arrow.w_assoc F, wide_pushout.arrow_ι (λ i, g.hom)] }, naturality' := λ x y f, by { ext, { simp }, { simp } } } /-- The augmented Čech conerve associated to an arrow. -/ @[simps] def augmented_cech_conerve : cosimplicial_object.augmented C := { left := f.left, right := f.cech_conerve, hom := { app := λ i, wide_pushout.head _, naturality' := λ x y f, by { dsimp, simp } } } /-- The morphism between augmented Čech conerves associated to a morphism of arrows. -/ @[simps] def map_augmented_cech_conerve {f g : arrow C} [∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)] [∀ n : ℕ, has_wide_pushout g.left (λ i : fin (n+1), g.right) (λ i, g.hom)] (F : f ⟶ g) : f.augmented_cech_conerve ⟶ g.augmented_cech_conerve := { left := F.left, right := map_cech_conerve F, w' := by { ext, simp } } end category_theory.arrow namespace category_theory namespace cosimplicial_object variables [∀ (n : ℕ) (f : arrow C), has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)] /-- The Čech conerve construction, as a functor from `arrow C`. -/ @[simps] def cech_conerve : arrow C ⥤ cosimplicial_object C := { obj := λ f, f.cech_conerve, map := λ f g F, arrow.map_cech_conerve F, map_id' := λ i, by { ext, { dsimp, simp }, { dsimp, simp } }, map_comp' := λ f g h F G, by { ext, { simp }, { simp } } } /-- The augmented Čech conerve construction, as a functor from `arrow C`. -/ @[simps] def augmented_cech_conerve : arrow C ⥤ cosimplicial_object.augmented C := { obj := λ f, f.augmented_cech_conerve, map := λ f g F, arrow.map_augmented_cech_conerve F, map_id' := λ f, by { ext, { refl }, { dsimp, simp }, { dsimp, simp } }, map_comp' := λ f g h F G, by { ext, { refl }, { simp }, { simp } } } /-- A helper function used in defining the Čech conerve adjunction. -/ @[simps] def equivalence_left_to_right (F : arrow C) (X : cosimplicial_object.augmented C) (G : F.augmented_cech_conerve ⟶ X) : F ⟶ augmented.to_arrow.obj X := { left := G.left, right := (wide_pushout.ι (λ i, F.hom) 0 ≫ G.right.app (simplex_category.mk 0) : _), w' := begin have := G.w, apply_fun (λ e, e.app (simplex_category.mk 0)) at this, simpa only [category_theory.functor.id_map, augmented.to_arrow_obj_hom, wide_pushout.arrow_ι_assoc (λ i, F.hom)], end } /-- A helper function used in defining the Čech conerve adjunction. -/ @[simps] def equivalence_right_to_left (F : arrow C) (X : cosimplicial_object.augmented C) (G : F ⟶ augmented.to_arrow.obj X) : F.augmented_cech_conerve ⟶ X := { left := G.left, right := { app := λ x, limits.wide_pushout.desc (G.left ≫ X.hom.app _) (λ i, G.right ≫ X.right.map (simplex_category.const x i)) begin rintros j, rw ← arrow.w_assoc G, have t := X.hom.naturality (x.const j), dsimp at t ⊢, simp only [category.id_comp] at t, rw ← t, end, naturality' := begin intros x y f, ext, { dsimp, simp only [wide_pushout.ι_desc_assoc, wide_pushout.ι_desc], rw [category.assoc, ←X.right.map_comp], refl }, { dsimp, simp only [functor.const_obj_map, ←nat_trans.naturality, wide_pushout.head_desc_assoc, wide_pushout.head_desc, category.assoc], erw category.id_comp } end }, w' := by { ext, simp } } /-- A helper function used in defining the Čech conerve adjunction. -/ @[simps] def cech_conerve_equiv (F : arrow C) (X : cosimplicial_object.augmented C) : (F.augmented_cech_conerve ⟶ X) ≃ (F ⟶ augmented.to_arrow.obj X) := { to_fun := equivalence_left_to_right _ _, inv_fun := equivalence_right_to_left _ _, left_inv := begin intro A, dsimp, ext _, { refl }, ext _ ⟨⟩, -- A bug in the `ext` tactic? { dsimp, simp only [arrow.cech_conerve_map, wide_pushout.ι_desc, category.assoc, ← nat_trans.naturality, wide_pushout.ι_desc_assoc], refl }, { erw wide_pushout.head_desc, have := A.w, apply_fun (λ e, e.app x) at this, rw nat_trans.comp_app at this, erw this, refl }, end, right_inv := begin intro A, ext, { refl, }, { dsimp, erw wide_pushout.ι_desc, nth_rewrite 1 ← category.comp_id A.right, congr' 1, convert X.right.map_id _, ext ⟨a,ha⟩, change a < 1 at ha, change 0 = a, linarith }, end } /-- The augmented Čech conerve construction is left adjoint to the `to_arrow` functor. -/ abbreviation cech_conerve_adjunction : augmented_cech_conerve ⊣ (augmented.to_arrow : _ ⥤ arrow C) := adjunction.mk_of_hom_equiv { hom_equiv := cech_conerve_equiv, hom_equiv_naturality_left_symm' := λ x y f g h, by { ext, { refl }, { simp }, { simp } }, hom_equiv_naturality_right' := λ x y f g h, by { ext, { simp }, { simp } } } end cosimplicial_object end category_theory