Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 12,735 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/-
Copyright (c) 2021 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Adam Topaz
-/

import algebraic_topology.simplicial_object
import category_theory.limits.shapes.wide_pullbacks
import category_theory.arrow

/-!

# The Čech Nerve

This file provides a definition of the Čech nerve associated to an arrow, provided
the base category has the correct wide pullbacks.

Several variants are provided, given `f : arrow C`:
1. `f.cech_nerve` is the Čech nerve, considered as a simplicial object in `C`.
2. `f.augmented_cech_nerve` is the augmented Čech nerve, considered as an
  augmented simplicial object in `C`.
3. `simplicial_object.cech_nerve` and `simplicial_object.augmented_cech_nerve` are
  functorial versions of 1 resp. 2.

-/

open category_theory
open category_theory.limits

noncomputable theory

universes v u

variables {C : Type u} [category.{v} C]

namespace category_theory.arrow

variables (f : arrow C)
variables [∀ n : ℕ, has_wide_pullback.{0} f.right (λ i : fin (n+1), f.left) (λ i, f.hom)]

/-- The Čech nerve associated to an arrow. -/
@[simps]
def cech_nerve : simplicial_object C :=
{ obj := λ n, wide_pullback.{0} f.right
    (λ i : fin (n.unop.len + 1), f.left) (λ i, f.hom),
  map := λ m n g, wide_pullback.lift (wide_pullback.base _)
    (λ i, wide_pullback.π (λ i, f.hom) $ g.unop.to_order_hom i) $ λ j, by simp,
  map_id' := λ x, by { ext ⟨⟩, { simpa }, { simp } },
  map_comp' := λ x y z f g, by { ext ⟨⟩, { simpa }, { simp } } }

/-- The morphism between Čech nerves associated to a morphism of arrows. -/
@[simps]
def map_cech_nerve {f g : arrow C}
  [∀ n : ℕ, has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)]
  [∀ n : ℕ, has_wide_pullback g.right (λ i : fin (n+1), g.left) (λ i, g.hom)]
  (F : f ⟶ g) : f.cech_nerve ⟶ g.cech_nerve :=
{ app := λ n, wide_pullback.lift (wide_pullback.base _ ≫ F.right)
    (λ i, wide_pullback.π _ i ≫ F.left) $ λ j, by simp,
  naturality' := λ x y f, by { ext ⟨⟩, { simp }, { simp } } }

/-- The augmented Čech nerve associated to an arrow. -/
@[simps]
def augmented_cech_nerve : simplicial_object.augmented C :=
{ left := f.cech_nerve,
  right := f.right,
  hom :=
  { app := λ i, wide_pullback.base _,
    naturality' := λ x y f, by { dsimp, simp } } }

/-- The morphism between augmented Čech nerve associated to a morphism of arrows. -/
@[simps]
def map_augmented_cech_nerve {f g : arrow C}
  [∀ n : ℕ, has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)]
  [∀ n : ℕ, has_wide_pullback g.right (λ i : fin (n+1), g.left) (λ i, g.hom)]
  (F : f ⟶ g) : f.augmented_cech_nerve ⟶ g.augmented_cech_nerve :=
{ left := map_cech_nerve F,
  right := F.right,
  w' := by { ext, simp } }

end category_theory.arrow

namespace category_theory
namespace simplicial_object

variables [∀ (n : ℕ) (f : arrow C),
  has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)]

/-- The Čech nerve construction, as a functor from `arrow C`. -/
@[simps]
def cech_nerve : arrow C ⥤ simplicial_object C :=
{ obj := λ f, f.cech_nerve,
  map := λ f g F, arrow.map_cech_nerve F,
  map_id' := λ i, by { ext, { simp }, { simp } },
  map_comp' := λ x y z f g, by { ext, { simp }, { simp } } }

/-- The augmented Čech nerve construction, as a functor from `arrow C`. -/
@[simps]
def augmented_cech_nerve : arrow C ⥤ simplicial_object.augmented C :=
{ obj := λ f, f.augmented_cech_nerve,
  map := λ f g F, arrow.map_augmented_cech_nerve F,
  map_id' := λ x, by { ext, { simp }, { simp }, { refl } },
  map_comp' := λ x y z f g, by { ext, { simp }, { simp }, { refl } } }

/-- A helper function used in defining the Čech adjunction. -/
@[simps]
def equivalence_right_to_left (X : simplicial_object.augmented C) (F : arrow C)
  (G : X ⟶ F.augmented_cech_nerve) : augmented.to_arrow.obj X ⟶ F :=
{ left := G.left.app _ ≫ wide_pullback.π (λ i, F.hom) 0,
  right := G.right,
  w' := begin
    have := G.w,
    apply_fun (λ e, e.app (opposite.op $ simplex_category.mk 0)) at this,
    simpa using this,
  end }

/-- A helper function used in defining the Čech adjunction. -/
@[simps]
def equivalence_left_to_right (X : simplicial_object.augmented C) (F : arrow C)
  (G : augmented.to_arrow.obj X ⟶ F) : X ⟶ F.augmented_cech_nerve :=
{ left :=
  { app := λ x, limits.wide_pullback.lift (X.hom.app _ ≫ G.right)
      (λ i, X.left.map (simplex_category.const x.unop i).op ≫ G.left)
      (λ i, by { dsimp, erw [category.assoc, arrow.w,
        augmented.to_arrow_obj_hom, nat_trans.naturality_assoc,
        functor.const_obj_map, category.id_comp] } ),
    naturality' := begin
      intros x y f,
      ext,
      { dsimp,
        simp only [wide_pullback.lift_π, category.assoc],
        rw [← category.assoc, ← X.left.map_comp],
        refl },
      { dsimp,
        simp only [functor.const_obj_map, nat_trans.naturality_assoc,
          wide_pullback.lift_base, category.assoc],
        erw category.id_comp }
    end },
  right := G.right,
  w' := by { ext, dsimp, simp } }

/-- A helper function used in defining the Čech adjunction. -/
@[simps]
def cech_nerve_equiv (X : simplicial_object.augmented C) (F : arrow C) :
  (augmented.to_arrow.obj X ⟶ F) ≃ (X ⟶ F.augmented_cech_nerve) :=
{ to_fun := equivalence_left_to_right _ _,
  inv_fun := equivalence_right_to_left _ _,
  left_inv := begin
    intro A,
    dsimp,
    ext,
    { dsimp,
      erw wide_pullback.lift_π,
      nth_rewrite 1 ← category.id_comp A.left,
      congr' 1,
      convert X.left.map_id _,
      rw ← op_id,
      congr' 1,
      ext ⟨a,ha⟩,
      change a < 1 at ha,
      change 0 = a,
      linarith },
    { refl, }
  end,
  right_inv := begin
    intro A,
    ext _ ⟨j⟩,
    { dsimp,
      simp only [arrow.cech_nerve_map, wide_pullback.lift_π, nat_trans.naturality_assoc],
      erw wide_pullback.lift_π,
      refl },
    { erw wide_pullback.lift_base,
      have := A.w,
      apply_fun (λ e, e.app x) at this,
      rw nat_trans.comp_app at this,
      erw this,
      refl },
    { refl }
  end }

/-- The augmented Čech nerve construction is right adjoint to the `to_arrow` functor. -/
abbreviation cech_nerve_adjunction :
  (augmented.to_arrow : _ ⥤ arrow C) ⊣ augmented_cech_nerve :=
adjunction.mk_of_hom_equiv
{ hom_equiv := cech_nerve_equiv,
  hom_equiv_naturality_left_symm' := λ x y f g h, by { ext, { simp }, { simp } },
  hom_equiv_naturality_right' := λ x y f g h, by { ext, { simp }, { simp }, { refl } } }

end simplicial_object

end category_theory

namespace category_theory.arrow

variables (f : arrow C)
variables [∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)]

/-- The Čech conerve associated to an arrow. -/
@[simps]
def cech_conerve : cosimplicial_object C :=
{ obj := λ n, wide_pushout f.left
    (λ i : fin (n.len + 1), f.right) (λ i, f.hom),
  map := λ m n g, wide_pushout.desc (wide_pushout.head _)
    (λ i, wide_pushout.ι (λ i, f.hom) $ g.to_order_hom i) $
    λ i, by { rw [wide_pushout.arrow_ι (λ i, f.hom)] },
  map_id' := λ x, by { ext ⟨⟩, { simpa }, { simp } },
  map_comp' := λ x y z f g, by { ext ⟨⟩, { simpa }, { simp } } }

/-- The morphism between Čech conerves associated to a morphism of arrows. -/
@[simps]
def map_cech_conerve {f g : arrow C}
  [∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)]
  [∀ n : ℕ, has_wide_pushout g.left (λ i : fin (n+1), g.right) (λ i, g.hom)]
  (F : f ⟶ g) : f.cech_conerve ⟶ g.cech_conerve :=
{ app := λ n, wide_pushout.desc (F.left ≫ wide_pushout.head _)
      (λ i, F.right ≫ wide_pushout.ι _ i) $
      λ i, by { rw [← arrow.w_assoc F, wide_pushout.arrow_ι (λ i, g.hom)] },
  naturality' := λ x y f, by { ext, { simp }, { simp } } }

/-- The augmented Čech conerve associated to an arrow. -/
@[simps]
def augmented_cech_conerve : cosimplicial_object.augmented C :=
{ left := f.left,
  right := f.cech_conerve,
  hom :=
  { app := λ i, wide_pushout.head _,
    naturality' := λ x y f, by { dsimp, simp } } }

/-- The morphism between augmented Čech conerves associated to a morphism of arrows. -/
@[simps]
def map_augmented_cech_conerve {f g : arrow C}
  [∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)]
  [∀ n : ℕ, has_wide_pushout g.left (λ i : fin (n+1), g.right) (λ i, g.hom)]
  (F : f ⟶ g) : f.augmented_cech_conerve ⟶ g.augmented_cech_conerve :=
{ left := F.left,
  right := map_cech_conerve F,
  w' := by { ext, simp } }

end category_theory.arrow

namespace category_theory
namespace cosimplicial_object

variables [∀ (n : ℕ) (f : arrow C),
  has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)]

/-- The Čech conerve construction, as a functor from `arrow C`. -/
@[simps]
def cech_conerve : arrow C ⥤ cosimplicial_object C :=
{ obj := λ f, f.cech_conerve,
  map := λ f g F, arrow.map_cech_conerve F,
  map_id' := λ i, by { ext, { dsimp, simp }, { dsimp, simp } },
  map_comp' := λ f g h F G, by { ext, { simp }, { simp } } }

/-- The augmented Čech conerve construction, as a functor from `arrow C`. -/
@[simps]
def augmented_cech_conerve : arrow C ⥤ cosimplicial_object.augmented C :=
{ obj := λ f, f.augmented_cech_conerve,
  map := λ f g F, arrow.map_augmented_cech_conerve F,
  map_id' := λ f, by { ext, { refl }, { dsimp, simp }, { dsimp, simp } },
  map_comp' := λ f g h F G, by { ext, { refl }, { simp }, { simp } } }

/-- A helper function used in defining the Čech conerve adjunction. -/
@[simps]
def equivalence_left_to_right (F : arrow C) (X : cosimplicial_object.augmented C)
  (G : F.augmented_cech_conerve ⟶ X) : F ⟶ augmented.to_arrow.obj X :=
{ left := G.left,
  right :=
    (wide_pushout.ι (λ i, F.hom) 0 ≫ G.right.app (simplex_category.mk 0) : _),
  w' := begin
    have := G.w,
    apply_fun (λ e, e.app (simplex_category.mk 0)) at this,
    simpa only [category_theory.functor.id_map, augmented.to_arrow_obj_hom,
      wide_pushout.arrow_ι_assoc (λ i, F.hom)],
  end }

/-- A helper function used in defining the Čech conerve adjunction. -/
@[simps]
def equivalence_right_to_left (F : arrow C) (X : cosimplicial_object.augmented C)
  (G : F ⟶ augmented.to_arrow.obj X) : F.augmented_cech_conerve ⟶ X :=
{ left := G.left,
  right := { app := λ x, limits.wide_pushout.desc (G.left ≫ X.hom.app _)
      (λ i, G.right ≫ X.right.map (simplex_category.const x i))
      begin
        rintros j,
        rw ← arrow.w_assoc G,
        have t := X.hom.naturality (x.const j),
        dsimp at t ⊢,
        simp only [category.id_comp] at t,
        rw ← t,
      end,
    naturality' := begin
      intros x y f,
      ext,
      { dsimp,
        simp only [wide_pushout.ι_desc_assoc, wide_pushout.ι_desc],
        rw [category.assoc, ←X.right.map_comp],
        refl },
      { dsimp,
        simp only [functor.const_obj_map, ←nat_trans.naturality,
          wide_pushout.head_desc_assoc, wide_pushout.head_desc, category.assoc],
        erw category.id_comp }
    end },
  w' := by { ext, simp } }

/-- A helper function used in defining the Čech conerve adjunction. -/
@[simps]
def cech_conerve_equiv (F : arrow C) (X : cosimplicial_object.augmented C) :
  (F.augmented_cech_conerve ⟶ X) ≃ (F ⟶ augmented.to_arrow.obj X) :=
{ to_fun := equivalence_left_to_right _ _,
  inv_fun := equivalence_right_to_left _ _,
  left_inv := begin
    intro A,
    dsimp,
    ext _, { refl }, ext _ ⟨⟩,  -- A bug in the `ext` tactic?
    { dsimp,
      simp only [arrow.cech_conerve_map, wide_pushout.ι_desc, category.assoc,
        ← nat_trans.naturality, wide_pushout.ι_desc_assoc],
      refl },
    { erw wide_pushout.head_desc,
      have := A.w,
      apply_fun (λ e, e.app x) at this,
      rw nat_trans.comp_app at this,
      erw this,
      refl },
  end,
  right_inv := begin
    intro A,
    ext,
    { refl, },
    { dsimp,
      erw wide_pushout.ι_desc,
      nth_rewrite 1 ← category.comp_id A.right,
      congr' 1,
      convert X.right.map_id _,
      ext ⟨a,ha⟩,
      change a < 1 at ha,
      change 0 = a,
      linarith },
  end }

/-- The augmented Čech conerve construction is left adjoint to the `to_arrow` functor. -/
abbreviation cech_conerve_adjunction :
  augmented_cech_conerve ⊣ (augmented.to_arrow : _ ⥤ arrow C) :=
adjunction.mk_of_hom_equiv
{ hom_equiv := cech_conerve_equiv,
  hom_equiv_naturality_left_symm' := λ x y f g h, by { ext, { refl }, { simp }, { simp } },
  hom_equiv_naturality_right' := λ x y f g h, by { ext, { simp }, { simp } } }

end cosimplicial_object

end category_theory