Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 12,735 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
/-
Copyright (c) 2021 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Adam Topaz
-/
import algebraic_topology.simplicial_object
import category_theory.limits.shapes.wide_pullbacks
import category_theory.arrow
/-!
# The Čech Nerve
This file provides a definition of the Čech nerve associated to an arrow, provided
the base category has the correct wide pullbacks.
Several variants are provided, given `f : arrow C`:
1. `f.cech_nerve` is the Čech nerve, considered as a simplicial object in `C`.
2. `f.augmented_cech_nerve` is the augmented Čech nerve, considered as an
augmented simplicial object in `C`.
3. `simplicial_object.cech_nerve` and `simplicial_object.augmented_cech_nerve` are
functorial versions of 1 resp. 2.
-/
open category_theory
open category_theory.limits
noncomputable theory
universes v u
variables {C : Type u} [category.{v} C]
namespace category_theory.arrow
variables (f : arrow C)
variables [∀ n : ℕ, has_wide_pullback.{0} f.right (λ i : fin (n+1), f.left) (λ i, f.hom)]
/-- The Čech nerve associated to an arrow. -/
@[simps]
def cech_nerve : simplicial_object C :=
{ obj := λ n, wide_pullback.{0} f.right
(λ i : fin (n.unop.len + 1), f.left) (λ i, f.hom),
map := λ m n g, wide_pullback.lift (wide_pullback.base _)
(λ i, wide_pullback.π (λ i, f.hom) $ g.unop.to_order_hom i) $ λ j, by simp,
map_id' := λ x, by { ext ⟨⟩, { simpa }, { simp } },
map_comp' := λ x y z f g, by { ext ⟨⟩, { simpa }, { simp } } }
/-- The morphism between Čech nerves associated to a morphism of arrows. -/
@[simps]
def map_cech_nerve {f g : arrow C}
[∀ n : ℕ, has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)]
[∀ n : ℕ, has_wide_pullback g.right (λ i : fin (n+1), g.left) (λ i, g.hom)]
(F : f ⟶ g) : f.cech_nerve ⟶ g.cech_nerve :=
{ app := λ n, wide_pullback.lift (wide_pullback.base _ ≫ F.right)
(λ i, wide_pullback.π _ i ≫ F.left) $ λ j, by simp,
naturality' := λ x y f, by { ext ⟨⟩, { simp }, { simp } } }
/-- The augmented Čech nerve associated to an arrow. -/
@[simps]
def augmented_cech_nerve : simplicial_object.augmented C :=
{ left := f.cech_nerve,
right := f.right,
hom :=
{ app := λ i, wide_pullback.base _,
naturality' := λ x y f, by { dsimp, simp } } }
/-- The morphism between augmented Čech nerve associated to a morphism of arrows. -/
@[simps]
def map_augmented_cech_nerve {f g : arrow C}
[∀ n : ℕ, has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)]
[∀ n : ℕ, has_wide_pullback g.right (λ i : fin (n+1), g.left) (λ i, g.hom)]
(F : f ⟶ g) : f.augmented_cech_nerve ⟶ g.augmented_cech_nerve :=
{ left := map_cech_nerve F,
right := F.right,
w' := by { ext, simp } }
end category_theory.arrow
namespace category_theory
namespace simplicial_object
variables [∀ (n : ℕ) (f : arrow C),
has_wide_pullback f.right (λ i : fin (n+1), f.left) (λ i, f.hom)]
/-- The Čech nerve construction, as a functor from `arrow C`. -/
@[simps]
def cech_nerve : arrow C ⥤ simplicial_object C :=
{ obj := λ f, f.cech_nerve,
map := λ f g F, arrow.map_cech_nerve F,
map_id' := λ i, by { ext, { simp }, { simp } },
map_comp' := λ x y z f g, by { ext, { simp }, { simp } } }
/-- The augmented Čech nerve construction, as a functor from `arrow C`. -/
@[simps]
def augmented_cech_nerve : arrow C ⥤ simplicial_object.augmented C :=
{ obj := λ f, f.augmented_cech_nerve,
map := λ f g F, arrow.map_augmented_cech_nerve F,
map_id' := λ x, by { ext, { simp }, { simp }, { refl } },
map_comp' := λ x y z f g, by { ext, { simp }, { simp }, { refl } } }
/-- A helper function used in defining the Čech adjunction. -/
@[simps]
def equivalence_right_to_left (X : simplicial_object.augmented C) (F : arrow C)
(G : X ⟶ F.augmented_cech_nerve) : augmented.to_arrow.obj X ⟶ F :=
{ left := G.left.app _ ≫ wide_pullback.π (λ i, F.hom) 0,
right := G.right,
w' := begin
have := G.w,
apply_fun (λ e, e.app (opposite.op $ simplex_category.mk 0)) at this,
simpa using this,
end }
/-- A helper function used in defining the Čech adjunction. -/
@[simps]
def equivalence_left_to_right (X : simplicial_object.augmented C) (F : arrow C)
(G : augmented.to_arrow.obj X ⟶ F) : X ⟶ F.augmented_cech_nerve :=
{ left :=
{ app := λ x, limits.wide_pullback.lift (X.hom.app _ ≫ G.right)
(λ i, X.left.map (simplex_category.const x.unop i).op ≫ G.left)
(λ i, by { dsimp, erw [category.assoc, arrow.w,
augmented.to_arrow_obj_hom, nat_trans.naturality_assoc,
functor.const_obj_map, category.id_comp] } ),
naturality' := begin
intros x y f,
ext,
{ dsimp,
simp only [wide_pullback.lift_π, category.assoc],
rw [← category.assoc, ← X.left.map_comp],
refl },
{ dsimp,
simp only [functor.const_obj_map, nat_trans.naturality_assoc,
wide_pullback.lift_base, category.assoc],
erw category.id_comp }
end },
right := G.right,
w' := by { ext, dsimp, simp } }
/-- A helper function used in defining the Čech adjunction. -/
@[simps]
def cech_nerve_equiv (X : simplicial_object.augmented C) (F : arrow C) :
(augmented.to_arrow.obj X ⟶ F) ≃ (X ⟶ F.augmented_cech_nerve) :=
{ to_fun := equivalence_left_to_right _ _,
inv_fun := equivalence_right_to_left _ _,
left_inv := begin
intro A,
dsimp,
ext,
{ dsimp,
erw wide_pullback.lift_π,
nth_rewrite 1 ← category.id_comp A.left,
congr' 1,
convert X.left.map_id _,
rw ← op_id,
congr' 1,
ext ⟨a,ha⟩,
change a < 1 at ha,
change 0 = a,
linarith },
{ refl, }
end,
right_inv := begin
intro A,
ext _ ⟨j⟩,
{ dsimp,
simp only [arrow.cech_nerve_map, wide_pullback.lift_π, nat_trans.naturality_assoc],
erw wide_pullback.lift_π,
refl },
{ erw wide_pullback.lift_base,
have := A.w,
apply_fun (λ e, e.app x) at this,
rw nat_trans.comp_app at this,
erw this,
refl },
{ refl }
end }
/-- The augmented Čech nerve construction is right adjoint to the `to_arrow` functor. -/
abbreviation cech_nerve_adjunction :
(augmented.to_arrow : _ ⥤ arrow C) ⊣ augmented_cech_nerve :=
adjunction.mk_of_hom_equiv
{ hom_equiv := cech_nerve_equiv,
hom_equiv_naturality_left_symm' := λ x y f g h, by { ext, { simp }, { simp } },
hom_equiv_naturality_right' := λ x y f g h, by { ext, { simp }, { simp }, { refl } } }
end simplicial_object
end category_theory
namespace category_theory.arrow
variables (f : arrow C)
variables [∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)]
/-- The Čech conerve associated to an arrow. -/
@[simps]
def cech_conerve : cosimplicial_object C :=
{ obj := λ n, wide_pushout f.left
(λ i : fin (n.len + 1), f.right) (λ i, f.hom),
map := λ m n g, wide_pushout.desc (wide_pushout.head _)
(λ i, wide_pushout.ι (λ i, f.hom) $ g.to_order_hom i) $
λ i, by { rw [wide_pushout.arrow_ι (λ i, f.hom)] },
map_id' := λ x, by { ext ⟨⟩, { simpa }, { simp } },
map_comp' := λ x y z f g, by { ext ⟨⟩, { simpa }, { simp } } }
/-- The morphism between Čech conerves associated to a morphism of arrows. -/
@[simps]
def map_cech_conerve {f g : arrow C}
[∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)]
[∀ n : ℕ, has_wide_pushout g.left (λ i : fin (n+1), g.right) (λ i, g.hom)]
(F : f ⟶ g) : f.cech_conerve ⟶ g.cech_conerve :=
{ app := λ n, wide_pushout.desc (F.left ≫ wide_pushout.head _)
(λ i, F.right ≫ wide_pushout.ι _ i) $
λ i, by { rw [← arrow.w_assoc F, wide_pushout.arrow_ι (λ i, g.hom)] },
naturality' := λ x y f, by { ext, { simp }, { simp } } }
/-- The augmented Čech conerve associated to an arrow. -/
@[simps]
def augmented_cech_conerve : cosimplicial_object.augmented C :=
{ left := f.left,
right := f.cech_conerve,
hom :=
{ app := λ i, wide_pushout.head _,
naturality' := λ x y f, by { dsimp, simp } } }
/-- The morphism between augmented Čech conerves associated to a morphism of arrows. -/
@[simps]
def map_augmented_cech_conerve {f g : arrow C}
[∀ n : ℕ, has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)]
[∀ n : ℕ, has_wide_pushout g.left (λ i : fin (n+1), g.right) (λ i, g.hom)]
(F : f ⟶ g) : f.augmented_cech_conerve ⟶ g.augmented_cech_conerve :=
{ left := F.left,
right := map_cech_conerve F,
w' := by { ext, simp } }
end category_theory.arrow
namespace category_theory
namespace cosimplicial_object
variables [∀ (n : ℕ) (f : arrow C),
has_wide_pushout f.left (λ i : fin (n+1), f.right) (λ i, f.hom)]
/-- The Čech conerve construction, as a functor from `arrow C`. -/
@[simps]
def cech_conerve : arrow C ⥤ cosimplicial_object C :=
{ obj := λ f, f.cech_conerve,
map := λ f g F, arrow.map_cech_conerve F,
map_id' := λ i, by { ext, { dsimp, simp }, { dsimp, simp } },
map_comp' := λ f g h F G, by { ext, { simp }, { simp } } }
/-- The augmented Čech conerve construction, as a functor from `arrow C`. -/
@[simps]
def augmented_cech_conerve : arrow C ⥤ cosimplicial_object.augmented C :=
{ obj := λ f, f.augmented_cech_conerve,
map := λ f g F, arrow.map_augmented_cech_conerve F,
map_id' := λ f, by { ext, { refl }, { dsimp, simp }, { dsimp, simp } },
map_comp' := λ f g h F G, by { ext, { refl }, { simp }, { simp } } }
/-- A helper function used in defining the Čech conerve adjunction. -/
@[simps]
def equivalence_left_to_right (F : arrow C) (X : cosimplicial_object.augmented C)
(G : F.augmented_cech_conerve ⟶ X) : F ⟶ augmented.to_arrow.obj X :=
{ left := G.left,
right :=
(wide_pushout.ι (λ i, F.hom) 0 ≫ G.right.app (simplex_category.mk 0) : _),
w' := begin
have := G.w,
apply_fun (λ e, e.app (simplex_category.mk 0)) at this,
simpa only [category_theory.functor.id_map, augmented.to_arrow_obj_hom,
wide_pushout.arrow_ι_assoc (λ i, F.hom)],
end }
/-- A helper function used in defining the Čech conerve adjunction. -/
@[simps]
def equivalence_right_to_left (F : arrow C) (X : cosimplicial_object.augmented C)
(G : F ⟶ augmented.to_arrow.obj X) : F.augmented_cech_conerve ⟶ X :=
{ left := G.left,
right := { app := λ x, limits.wide_pushout.desc (G.left ≫ X.hom.app _)
(λ i, G.right ≫ X.right.map (simplex_category.const x i))
begin
rintros j,
rw ← arrow.w_assoc G,
have t := X.hom.naturality (x.const j),
dsimp at t ⊢,
simp only [category.id_comp] at t,
rw ← t,
end,
naturality' := begin
intros x y f,
ext,
{ dsimp,
simp only [wide_pushout.ι_desc_assoc, wide_pushout.ι_desc],
rw [category.assoc, ←X.right.map_comp],
refl },
{ dsimp,
simp only [functor.const_obj_map, ←nat_trans.naturality,
wide_pushout.head_desc_assoc, wide_pushout.head_desc, category.assoc],
erw category.id_comp }
end },
w' := by { ext, simp } }
/-- A helper function used in defining the Čech conerve adjunction. -/
@[simps]
def cech_conerve_equiv (F : arrow C) (X : cosimplicial_object.augmented C) :
(F.augmented_cech_conerve ⟶ X) ≃ (F ⟶ augmented.to_arrow.obj X) :=
{ to_fun := equivalence_left_to_right _ _,
inv_fun := equivalence_right_to_left _ _,
left_inv := begin
intro A,
dsimp,
ext _, { refl }, ext _ ⟨⟩, -- A bug in the `ext` tactic?
{ dsimp,
simp only [arrow.cech_conerve_map, wide_pushout.ι_desc, category.assoc,
← nat_trans.naturality, wide_pushout.ι_desc_assoc],
refl },
{ erw wide_pushout.head_desc,
have := A.w,
apply_fun (λ e, e.app x) at this,
rw nat_trans.comp_app at this,
erw this,
refl },
end,
right_inv := begin
intro A,
ext,
{ refl, },
{ dsimp,
erw wide_pushout.ι_desc,
nth_rewrite 1 ← category.comp_id A.right,
congr' 1,
convert X.right.map_id _,
ext ⟨a,ha⟩,
change a < 1 at ha,
change 0 = a,
linarith },
end }
/-- The augmented Čech conerve construction is left adjoint to the `to_arrow` functor. -/
abbreviation cech_conerve_adjunction :
augmented_cech_conerve ⊣ (augmented.to_arrow : _ ⥤ arrow C) :=
adjunction.mk_of_hom_equiv
{ hom_equiv := cech_conerve_equiv,
hom_equiv_naturality_left_symm' := λ x y f g h, by { ext, { refl }, { simp }, { simp } },
hom_equiv_naturality_right' := λ x y f g h, by { ext, { simp }, { simp } } }
end cosimplicial_object
end category_theory
|