Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.4 kB
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import linear_algebra.finsupp
import algebra.monoid_algebra.basic
import algebra.direct_sum.internal
import ring_theory.graded_algebra.basic
/-!
# Internal grading of an `add_monoid_algebra`
In this file, we show that an `add_monoid_algebra` has an internal direct sum structure.
## Main results
* `add_monoid_algebra.grade_by R f i`: the `i`th grade of an `add_monoid_algebra R M` given by the
degree function `f`.
* `add_monoid_algebra.grade R i`: the `i`th grade of an `add_monoid_algebra R M` when the degree
function is the identity.
* `add_monoid_algebra.grade_by.graded_algebra`: `add_monoid_algebra` is an algebra graded by
`add_monoid_algebra.grade_by`.
* `add_monoid_algebra.grade.graded_algebra`: `add_monoid_algebra` is an algebra graded by
`add_monoid_algebra.grade`.
* `add_monoid_algebra.grade_by.is_internal`: propositionally, the statement that
`add_monoid_algebra.grade_by` defines an internal graded structure.
* `add_monoid_algebra.grade.is_internal`: propositionally, the statement that
`add_monoid_algebra.grade` defines an internal graded structure when the degree function
is the identity.
-/
noncomputable theory
namespace add_monoid_algebra
variables {M : Type*} {ι : Type*} {R : Type*} [decidable_eq M]
section
variables (R) [comm_semiring R]
/-- The submodule corresponding to each grade given by the degree function `f`. -/
abbreviation grade_by (f : M → ι) (i : ι) : submodule R (add_monoid_algebra R M) :=
{ carrier := {a | ∀ m, m ∈ a.support → f m = i },
zero_mem' := set.empty_subset _,
add_mem' := λ a b ha hb m h,
or.rec_on (finset.mem_union.mp (finsupp.support_add h)) (ha m) (hb m),
smul_mem' := λ a m h, set.subset.trans finsupp.support_smul h }
/-- The submodule corresponding to each grade. -/
abbreviation grade (m : M) : submodule R (add_monoid_algebra R M) := grade_by R id m
lemma grade_by_id : grade_by R (id : M → M) = grade R := by refl
lemma mem_grade_by_iff (f : M → ι) (i : ι) (a : add_monoid_algebra R M) :
a ∈ grade_by R f i ↔ (a.support : set M) ⊆ f ⁻¹' {i} := by refl
lemma mem_grade_iff (m : M) (a : add_monoid_algebra R M) : a ∈ grade R m ↔ a.support ⊆ {m} :=
begin
rw [← finset.coe_subset, finset.coe_singleton],
refl
end
lemma mem_grade_iff' (m : M) (a : add_monoid_algebra R M) :
a ∈ grade R m ↔
a ∈ ((finsupp.lsingle m).range : submodule R (add_monoid_algebra R M)) :=
begin
rw [mem_grade_iff, finsupp.support_subset_singleton'],
apply exists_congr,
intros r,
split; exact eq.symm
end
lemma grade_eq_lsingle_range (m : M) : grade R m = (finsupp.lsingle m).range :=
submodule.ext (mem_grade_iff' R m)
lemma single_mem_grade_by {R} [comm_semiring R] (f : M → ι) (m : M) (r : R) :
finsupp.single m r ∈ grade_by R f (f m) :=
begin
intros x hx,
rw finset.mem_singleton.mp (finsupp.support_single_subset hx),
end
lemma single_mem_grade {R} [comm_semiring R] (i : M) (r : R) : finsupp.single i r ∈ grade R i :=
single_mem_grade_by _ _ _
end
open_locale direct_sum
instance grade_by.graded_monoid [add_monoid M] [add_monoid ι] [comm_semiring R] (f : M →+ ι) :
set_like.graded_monoid (grade_by R f : ι → submodule R (add_monoid_algebra R M)) :=
{ one_mem := λ m h, begin
rw one_def at h,
by_cases H : (1 : R) = (0 : R),
{ rw [H , finsupp.single_zero] at h,
exfalso,
exact h },
{ rw [finsupp.support_single_ne_zero _ H, finset.mem_singleton] at h,
rw [h, add_monoid_hom.map_zero] }
end,
mul_mem := λ i j a b ha hb c hc, begin
set h := support_mul a b hc,
simp only [finset.mem_bUnion] at h,
rcases h with ⟨ma, ⟨hma, ⟨mb, ⟨hmb, hmc⟩⟩⟩⟩,
rw [← ha ma hma, ← hb mb hmb, finset.mem_singleton.mp hmc],
apply add_monoid_hom.map_add
end }
instance grade.graded_monoid [add_monoid M] [comm_semiring R] :
set_like.graded_monoid (grade R : M → submodule R (add_monoid_algebra R M)) :=
by apply grade_by.graded_monoid (add_monoid_hom.id _)
variables {R} [add_monoid M] [decidable_eq ι] [add_monoid ι] [comm_semiring R] (f : M →+ ι)
/-- Auxiliary definition; the canonical grade decomposition, used to provide
`direct_sum.decompose`. -/
def decompose_aux : add_monoid_algebra R M →ₐ[R] ⨁ i : ι, grade_by R f i :=
add_monoid_algebra.lift R M _
{ to_fun := λ m, direct_sum.of (λ i : ι, grade_by R f i) (f m.to_add)
⟨finsupp.single m.to_add 1, single_mem_grade_by _ _ _⟩,
map_one' := direct_sum.of_eq_of_graded_monoid_eq (by congr' 2; try {ext};
simp only [submodule.mem_to_add_submonoid, to_add_one, add_monoid_hom.map_zero]),
map_mul' := λ i j, begin
symmetry,
convert direct_sum.of_mul_of _ _,
apply direct_sum.of_eq_of_graded_monoid_eq,
congr' 2,
{ rw [to_add_mul, add_monoid_hom.map_add] },
{ ext,
simp only [submodule.mem_to_add_submonoid, add_monoid_hom.map_add, to_add_mul] },
{ exact eq.trans (by rw [one_mul, to_add_mul]) single_mul_single.symm }
end }
lemma decompose_aux_single (m : M) (r : R) :
decompose_aux f (finsupp.single m r) =
direct_sum.of (λ i : ι, grade_by R f i) (f m)
⟨finsupp.single m r, single_mem_grade_by _ _ _⟩ :=
begin
refine (lift_single _ _ _).trans _,
refine (direct_sum.of_smul _ _ _ _).symm.trans _,
apply direct_sum.of_eq_of_graded_monoid_eq,
refine sigma.subtype_ext rfl _,
refine (finsupp.smul_single' _ _ _).trans _,
rw mul_one,
refl,
end
lemma decompose_aux_coe {i : ι} (x : grade_by R f i) :
decompose_aux f ↑x = direct_sum.of (λ i, grade_by R f i) i x :=
begin
obtain ⟨x, hx⟩ := x,
revert hx,
refine finsupp.induction x _ _,
{ intros hx,
symmetry,
exact add_monoid_hom.map_zero _ },
{ intros m b y hmy hb ih hmby,
have : disjoint (finsupp.single m b).support y.support,
{ simpa only [finsupp.support_single_ne_zero _ hb, finset.disjoint_singleton_left] },
rw [mem_grade_by_iff, finsupp.support_add_eq this, finset.coe_union,
set.union_subset_iff] at hmby,
cases hmby with h1 h2,
have : f m = i,
{ rwa [finsupp.support_single_ne_zero _ hb, finset.coe_singleton,
set.singleton_subset_iff] at h1 },
subst this,
simp only [alg_hom.map_add, submodule.coe_mk, decompose_aux_single f m],
let ih' := ih h2,
dsimp at ih',
rw [ih', ← add_monoid_hom.map_add],
apply direct_sum.of_eq_of_graded_monoid_eq,
congr' 2 }
end
instance grade_by.graded_algebra : graded_algebra (grade_by R f) :=
graded_algebra.of_alg_hom _
(decompose_aux f)
(begin
ext : 2,
dsimp,
rw [decompose_aux_single, direct_sum.coe_alg_hom_of, subtype.coe_mk],
end)
(λ i x, by convert (decompose_aux_coe f x : _))
-- Lean can't find this later without us repeating it
instance grade_by.decomposition : direct_sum.decomposition (grade_by R f) :=
by apply_instance
@[simp] lemma decompose_aux_eq_decompose :
⇑(decompose_aux f : add_monoid_algebra R M →ₐ[R] ⨁ i : ι, grade_by R f i) =
(direct_sum.decompose (grade_by R f)) := rfl
@[simp] lemma grades_by.decompose_single (m : M) (r : R) :
direct_sum.decompose (grade_by R f) (finsupp.single m r) =
direct_sum.of (λ i : ι, grade_by R f i) (f m)
⟨finsupp.single m r, single_mem_grade_by _ _ _⟩ :=
decompose_aux_single _ _ _
instance grade.graded_algebra : graded_algebra (grade R : ι → submodule _ _) :=
add_monoid_algebra.grade_by.graded_algebra (add_monoid_hom.id _)
-- Lean can't find this later without us repeating it
instance grade.decomposition : direct_sum.decomposition (grade R : ι → submodule _ _) :=
by apply_instance
@[simp]
lemma grade.decompose_single (i : ι) (r : R) :
direct_sum.decompose (grade R : ι → submodule _ _) (finsupp.single i r) =
direct_sum.of (λ i : ι, grade R i) i ⟨finsupp.single i r, single_mem_grade _ _⟩ :=
decompose_aux_single _ _ _
/-- `add_monoid_algebra.gradesby` describe an internally graded algebra -/
lemma grade_by.is_internal : direct_sum.is_internal (grade_by R f) :=
direct_sum.decomposition.is_internal _
/-- `add_monoid_algebra.grades` describe an internally graded algebra -/
lemma grade.is_internal : direct_sum.is_internal (grade R : ι → submodule R _) :=
direct_sum.decomposition.is_internal _
end add_monoid_algebra