Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Eric Wieser. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Eric Wieser | |
-/ | |
import linear_algebra.finsupp | |
import algebra.monoid_algebra.basic | |
import algebra.direct_sum.internal | |
import ring_theory.graded_algebra.basic | |
/-! | |
# Internal grading of an `add_monoid_algebra` | |
In this file, we show that an `add_monoid_algebra` has an internal direct sum structure. | |
## Main results | |
* `add_monoid_algebra.grade_by R f i`: the `i`th grade of an `add_monoid_algebra R M` given by the | |
degree function `f`. | |
* `add_monoid_algebra.grade R i`: the `i`th grade of an `add_monoid_algebra R M` when the degree | |
function is the identity. | |
* `add_monoid_algebra.grade_by.graded_algebra`: `add_monoid_algebra` is an algebra graded by | |
`add_monoid_algebra.grade_by`. | |
* `add_monoid_algebra.grade.graded_algebra`: `add_monoid_algebra` is an algebra graded by | |
`add_monoid_algebra.grade`. | |
* `add_monoid_algebra.grade_by.is_internal`: propositionally, the statement that | |
`add_monoid_algebra.grade_by` defines an internal graded structure. | |
* `add_monoid_algebra.grade.is_internal`: propositionally, the statement that | |
`add_monoid_algebra.grade` defines an internal graded structure when the degree function | |
is the identity. | |
-/ | |
noncomputable theory | |
namespace add_monoid_algebra | |
variables {M : Type*} {ι : Type*} {R : Type*} [decidable_eq M] | |
section | |
variables (R) [comm_semiring R] | |
/-- The submodule corresponding to each grade given by the degree function `f`. -/ | |
abbreviation grade_by (f : M → ι) (i : ι) : submodule R (add_monoid_algebra R M) := | |
{ carrier := {a | ∀ m, m ∈ a.support → f m = i }, | |
zero_mem' := set.empty_subset _, | |
add_mem' := λ a b ha hb m h, | |
or.rec_on (finset.mem_union.mp (finsupp.support_add h)) (ha m) (hb m), | |
smul_mem' := λ a m h, set.subset.trans finsupp.support_smul h } | |
/-- The submodule corresponding to each grade. -/ | |
abbreviation grade (m : M) : submodule R (add_monoid_algebra R M) := grade_by R id m | |
lemma grade_by_id : grade_by R (id : M → M) = grade R := by refl | |
lemma mem_grade_by_iff (f : M → ι) (i : ι) (a : add_monoid_algebra R M) : | |
a ∈ grade_by R f i ↔ (a.support : set M) ⊆ f ⁻¹' {i} := by refl | |
lemma mem_grade_iff (m : M) (a : add_monoid_algebra R M) : a ∈ grade R m ↔ a.support ⊆ {m} := | |
begin | |
rw [← finset.coe_subset, finset.coe_singleton], | |
refl | |
end | |
lemma mem_grade_iff' (m : M) (a : add_monoid_algebra R M) : | |
a ∈ grade R m ↔ | |
a ∈ ((finsupp.lsingle m).range : submodule R (add_monoid_algebra R M)) := | |
begin | |
rw [mem_grade_iff, finsupp.support_subset_singleton'], | |
apply exists_congr, | |
intros r, | |
split; exact eq.symm | |
end | |
lemma grade_eq_lsingle_range (m : M) : grade R m = (finsupp.lsingle m).range := | |
submodule.ext (mem_grade_iff' R m) | |
lemma single_mem_grade_by {R} [comm_semiring R] (f : M → ι) (m : M) (r : R) : | |
finsupp.single m r ∈ grade_by R f (f m) := | |
begin | |
intros x hx, | |
rw finset.mem_singleton.mp (finsupp.support_single_subset hx), | |
end | |
lemma single_mem_grade {R} [comm_semiring R] (i : M) (r : R) : finsupp.single i r ∈ grade R i := | |
single_mem_grade_by _ _ _ | |
end | |
open_locale direct_sum | |
instance grade_by.graded_monoid [add_monoid M] [add_monoid ι] [comm_semiring R] (f : M →+ ι) : | |
set_like.graded_monoid (grade_by R f : ι → submodule R (add_monoid_algebra R M)) := | |
{ one_mem := λ m h, begin | |
rw one_def at h, | |
by_cases H : (1 : R) = (0 : R), | |
{ rw [H , finsupp.single_zero] at h, | |
exfalso, | |
exact h }, | |
{ rw [finsupp.support_single_ne_zero _ H, finset.mem_singleton] at h, | |
rw [h, add_monoid_hom.map_zero] } | |
end, | |
mul_mem := λ i j a b ha hb c hc, begin | |
set h := support_mul a b hc, | |
simp only [finset.mem_bUnion] at h, | |
rcases h with ⟨ma, ⟨hma, ⟨mb, ⟨hmb, hmc⟩⟩⟩⟩, | |
rw [← ha ma hma, ← hb mb hmb, finset.mem_singleton.mp hmc], | |
apply add_monoid_hom.map_add | |
end } | |
instance grade.graded_monoid [add_monoid M] [comm_semiring R] : | |
set_like.graded_monoid (grade R : M → submodule R (add_monoid_algebra R M)) := | |
by apply grade_by.graded_monoid (add_monoid_hom.id _) | |
variables {R} [add_monoid M] [decidable_eq ι] [add_monoid ι] [comm_semiring R] (f : M →+ ι) | |
/-- Auxiliary definition; the canonical grade decomposition, used to provide | |
`direct_sum.decompose`. -/ | |
def decompose_aux : add_monoid_algebra R M →ₐ[R] ⨁ i : ι, grade_by R f i := | |
add_monoid_algebra.lift R M _ | |
{ to_fun := λ m, direct_sum.of (λ i : ι, grade_by R f i) (f m.to_add) | |
⟨finsupp.single m.to_add 1, single_mem_grade_by _ _ _⟩, | |
map_one' := direct_sum.of_eq_of_graded_monoid_eq (by congr' 2; try {ext}; | |
simp only [submodule.mem_to_add_submonoid, to_add_one, add_monoid_hom.map_zero]), | |
map_mul' := λ i j, begin | |
symmetry, | |
convert direct_sum.of_mul_of _ _, | |
apply direct_sum.of_eq_of_graded_monoid_eq, | |
congr' 2, | |
{ rw [to_add_mul, add_monoid_hom.map_add] }, | |
{ ext, | |
simp only [submodule.mem_to_add_submonoid, add_monoid_hom.map_add, to_add_mul] }, | |
{ exact eq.trans (by rw [one_mul, to_add_mul]) single_mul_single.symm } | |
end } | |
lemma decompose_aux_single (m : M) (r : R) : | |
decompose_aux f (finsupp.single m r) = | |
direct_sum.of (λ i : ι, grade_by R f i) (f m) | |
⟨finsupp.single m r, single_mem_grade_by _ _ _⟩ := | |
begin | |
refine (lift_single _ _ _).trans _, | |
refine (direct_sum.of_smul _ _ _ _).symm.trans _, | |
apply direct_sum.of_eq_of_graded_monoid_eq, | |
refine sigma.subtype_ext rfl _, | |
refine (finsupp.smul_single' _ _ _).trans _, | |
rw mul_one, | |
refl, | |
end | |
lemma decompose_aux_coe {i : ι} (x : grade_by R f i) : | |
decompose_aux f ↑x = direct_sum.of (λ i, grade_by R f i) i x := | |
begin | |
obtain ⟨x, hx⟩ := x, | |
revert hx, | |
refine finsupp.induction x _ _, | |
{ intros hx, | |
symmetry, | |
exact add_monoid_hom.map_zero _ }, | |
{ intros m b y hmy hb ih hmby, | |
have : disjoint (finsupp.single m b).support y.support, | |
{ simpa only [finsupp.support_single_ne_zero _ hb, finset.disjoint_singleton_left] }, | |
rw [mem_grade_by_iff, finsupp.support_add_eq this, finset.coe_union, | |
set.union_subset_iff] at hmby, | |
cases hmby with h1 h2, | |
have : f m = i, | |
{ rwa [finsupp.support_single_ne_zero _ hb, finset.coe_singleton, | |
set.singleton_subset_iff] at h1 }, | |
subst this, | |
simp only [alg_hom.map_add, submodule.coe_mk, decompose_aux_single f m], | |
let ih' := ih h2, | |
dsimp at ih', | |
rw [ih', ← add_monoid_hom.map_add], | |
apply direct_sum.of_eq_of_graded_monoid_eq, | |
congr' 2 } | |
end | |
instance grade_by.graded_algebra : graded_algebra (grade_by R f) := | |
graded_algebra.of_alg_hom _ | |
(decompose_aux f) | |
(begin | |
ext : 2, | |
dsimp, | |
rw [decompose_aux_single, direct_sum.coe_alg_hom_of, subtype.coe_mk], | |
end) | |
(λ i x, by convert (decompose_aux_coe f x : _)) | |
-- Lean can't find this later without us repeating it | |
instance grade_by.decomposition : direct_sum.decomposition (grade_by R f) := | |
by apply_instance | |
@[simp] lemma decompose_aux_eq_decompose : | |
⇑(decompose_aux f : add_monoid_algebra R M →ₐ[R] ⨁ i : ι, grade_by R f i) = | |
(direct_sum.decompose (grade_by R f)) := rfl | |
@[simp] lemma grades_by.decompose_single (m : M) (r : R) : | |
direct_sum.decompose (grade_by R f) (finsupp.single m r) = | |
direct_sum.of (λ i : ι, grade_by R f i) (f m) | |
⟨finsupp.single m r, single_mem_grade_by _ _ _⟩ := | |
decompose_aux_single _ _ _ | |
instance grade.graded_algebra : graded_algebra (grade R : ι → submodule _ _) := | |
add_monoid_algebra.grade_by.graded_algebra (add_monoid_hom.id _) | |
-- Lean can't find this later without us repeating it | |
instance grade.decomposition : direct_sum.decomposition (grade R : ι → submodule _ _) := | |
by apply_instance | |
@[simp] | |
lemma grade.decompose_single (i : ι) (r : R) : | |
direct_sum.decompose (grade R : ι → submodule _ _) (finsupp.single i r) = | |
direct_sum.of (λ i : ι, grade R i) i ⟨finsupp.single i r, single_mem_grade _ _⟩ := | |
decompose_aux_single _ _ _ | |
/-- `add_monoid_algebra.gradesby` describe an internally graded algebra -/ | |
lemma grade_by.is_internal : direct_sum.is_internal (grade_by R f) := | |
direct_sum.decomposition.is_internal _ | |
/-- `add_monoid_algebra.grades` describe an internally graded algebra -/ | |
lemma grade.is_internal : direct_sum.is_internal (grade R : ι → submodule R _) := | |
direct_sum.decomposition.is_internal _ | |
end add_monoid_algebra | |