/- Copyright (c) 2021 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import linear_algebra.finsupp import algebra.monoid_algebra.basic import algebra.direct_sum.internal import ring_theory.graded_algebra.basic /-! # Internal grading of an `add_monoid_algebra` In this file, we show that an `add_monoid_algebra` has an internal direct sum structure. ## Main results * `add_monoid_algebra.grade_by R f i`: the `i`th grade of an `add_monoid_algebra R M` given by the degree function `f`. * `add_monoid_algebra.grade R i`: the `i`th grade of an `add_monoid_algebra R M` when the degree function is the identity. * `add_monoid_algebra.grade_by.graded_algebra`: `add_monoid_algebra` is an algebra graded by `add_monoid_algebra.grade_by`. * `add_monoid_algebra.grade.graded_algebra`: `add_monoid_algebra` is an algebra graded by `add_monoid_algebra.grade`. * `add_monoid_algebra.grade_by.is_internal`: propositionally, the statement that `add_monoid_algebra.grade_by` defines an internal graded structure. * `add_monoid_algebra.grade.is_internal`: propositionally, the statement that `add_monoid_algebra.grade` defines an internal graded structure when the degree function is the identity. -/ noncomputable theory namespace add_monoid_algebra variables {M : Type*} {ι : Type*} {R : Type*} [decidable_eq M] section variables (R) [comm_semiring R] /-- The submodule corresponding to each grade given by the degree function `f`. -/ abbreviation grade_by (f : M → ι) (i : ι) : submodule R (add_monoid_algebra R M) := { carrier := {a | ∀ m, m ∈ a.support → f m = i }, zero_mem' := set.empty_subset _, add_mem' := λ a b ha hb m h, or.rec_on (finset.mem_union.mp (finsupp.support_add h)) (ha m) (hb m), smul_mem' := λ a m h, set.subset.trans finsupp.support_smul h } /-- The submodule corresponding to each grade. -/ abbreviation grade (m : M) : submodule R (add_monoid_algebra R M) := grade_by R id m lemma grade_by_id : grade_by R (id : M → M) = grade R := by refl lemma mem_grade_by_iff (f : M → ι) (i : ι) (a : add_monoid_algebra R M) : a ∈ grade_by R f i ↔ (a.support : set M) ⊆ f ⁻¹' {i} := by refl lemma mem_grade_iff (m : M) (a : add_monoid_algebra R M) : a ∈ grade R m ↔ a.support ⊆ {m} := begin rw [← finset.coe_subset, finset.coe_singleton], refl end lemma mem_grade_iff' (m : M) (a : add_monoid_algebra R M) : a ∈ grade R m ↔ a ∈ ((finsupp.lsingle m).range : submodule R (add_monoid_algebra R M)) := begin rw [mem_grade_iff, finsupp.support_subset_singleton'], apply exists_congr, intros r, split; exact eq.symm end lemma grade_eq_lsingle_range (m : M) : grade R m = (finsupp.lsingle m).range := submodule.ext (mem_grade_iff' R m) lemma single_mem_grade_by {R} [comm_semiring R] (f : M → ι) (m : M) (r : R) : finsupp.single m r ∈ grade_by R f (f m) := begin intros x hx, rw finset.mem_singleton.mp (finsupp.support_single_subset hx), end lemma single_mem_grade {R} [comm_semiring R] (i : M) (r : R) : finsupp.single i r ∈ grade R i := single_mem_grade_by _ _ _ end open_locale direct_sum instance grade_by.graded_monoid [add_monoid M] [add_monoid ι] [comm_semiring R] (f : M →+ ι) : set_like.graded_monoid (grade_by R f : ι → submodule R (add_monoid_algebra R M)) := { one_mem := λ m h, begin rw one_def at h, by_cases H : (1 : R) = (0 : R), { rw [H , finsupp.single_zero] at h, exfalso, exact h }, { rw [finsupp.support_single_ne_zero _ H, finset.mem_singleton] at h, rw [h, add_monoid_hom.map_zero] } end, mul_mem := λ i j a b ha hb c hc, begin set h := support_mul a b hc, simp only [finset.mem_bUnion] at h, rcases h with ⟨ma, ⟨hma, ⟨mb, ⟨hmb, hmc⟩⟩⟩⟩, rw [← ha ma hma, ← hb mb hmb, finset.mem_singleton.mp hmc], apply add_monoid_hom.map_add end } instance grade.graded_monoid [add_monoid M] [comm_semiring R] : set_like.graded_monoid (grade R : M → submodule R (add_monoid_algebra R M)) := by apply grade_by.graded_monoid (add_monoid_hom.id _) variables {R} [add_monoid M] [decidable_eq ι] [add_monoid ι] [comm_semiring R] (f : M →+ ι) /-- Auxiliary definition; the canonical grade decomposition, used to provide `direct_sum.decompose`. -/ def decompose_aux : add_monoid_algebra R M →ₐ[R] ⨁ i : ι, grade_by R f i := add_monoid_algebra.lift R M _ { to_fun := λ m, direct_sum.of (λ i : ι, grade_by R f i) (f m.to_add) ⟨finsupp.single m.to_add 1, single_mem_grade_by _ _ _⟩, map_one' := direct_sum.of_eq_of_graded_monoid_eq (by congr' 2; try {ext}; simp only [submodule.mem_to_add_submonoid, to_add_one, add_monoid_hom.map_zero]), map_mul' := λ i j, begin symmetry, convert direct_sum.of_mul_of _ _, apply direct_sum.of_eq_of_graded_monoid_eq, congr' 2, { rw [to_add_mul, add_monoid_hom.map_add] }, { ext, simp only [submodule.mem_to_add_submonoid, add_monoid_hom.map_add, to_add_mul] }, { exact eq.trans (by rw [one_mul, to_add_mul]) single_mul_single.symm } end } lemma decompose_aux_single (m : M) (r : R) : decompose_aux f (finsupp.single m r) = direct_sum.of (λ i : ι, grade_by R f i) (f m) ⟨finsupp.single m r, single_mem_grade_by _ _ _⟩ := begin refine (lift_single _ _ _).trans _, refine (direct_sum.of_smul _ _ _ _).symm.trans _, apply direct_sum.of_eq_of_graded_monoid_eq, refine sigma.subtype_ext rfl _, refine (finsupp.smul_single' _ _ _).trans _, rw mul_one, refl, end lemma decompose_aux_coe {i : ι} (x : grade_by R f i) : decompose_aux f ↑x = direct_sum.of (λ i, grade_by R f i) i x := begin obtain ⟨x, hx⟩ := x, revert hx, refine finsupp.induction x _ _, { intros hx, symmetry, exact add_monoid_hom.map_zero _ }, { intros m b y hmy hb ih hmby, have : disjoint (finsupp.single m b).support y.support, { simpa only [finsupp.support_single_ne_zero _ hb, finset.disjoint_singleton_left] }, rw [mem_grade_by_iff, finsupp.support_add_eq this, finset.coe_union, set.union_subset_iff] at hmby, cases hmby with h1 h2, have : f m = i, { rwa [finsupp.support_single_ne_zero _ hb, finset.coe_singleton, set.singleton_subset_iff] at h1 }, subst this, simp only [alg_hom.map_add, submodule.coe_mk, decompose_aux_single f m], let ih' := ih h2, dsimp at ih', rw [ih', ← add_monoid_hom.map_add], apply direct_sum.of_eq_of_graded_monoid_eq, congr' 2 } end instance grade_by.graded_algebra : graded_algebra (grade_by R f) := graded_algebra.of_alg_hom _ (decompose_aux f) (begin ext : 2, dsimp, rw [decompose_aux_single, direct_sum.coe_alg_hom_of, subtype.coe_mk], end) (λ i x, by convert (decompose_aux_coe f x : _)) -- Lean can't find this later without us repeating it instance grade_by.decomposition : direct_sum.decomposition (grade_by R f) := by apply_instance @[simp] lemma decompose_aux_eq_decompose : ⇑(decompose_aux f : add_monoid_algebra R M →ₐ[R] ⨁ i : ι, grade_by R f i) = (direct_sum.decompose (grade_by R f)) := rfl @[simp] lemma grades_by.decompose_single (m : M) (r : R) : direct_sum.decompose (grade_by R f) (finsupp.single m r) = direct_sum.of (λ i : ι, grade_by R f i) (f m) ⟨finsupp.single m r, single_mem_grade_by _ _ _⟩ := decompose_aux_single _ _ _ instance grade.graded_algebra : graded_algebra (grade R : ι → submodule _ _) := add_monoid_algebra.grade_by.graded_algebra (add_monoid_hom.id _) -- Lean can't find this later without us repeating it instance grade.decomposition : direct_sum.decomposition (grade R : ι → submodule _ _) := by apply_instance @[simp] lemma grade.decompose_single (i : ι) (r : R) : direct_sum.decompose (grade R : ι → submodule _ _) (finsupp.single i r) = direct_sum.of (λ i : ι, grade R i) i ⟨finsupp.single i r, single_mem_grade _ _⟩ := decompose_aux_single _ _ _ /-- `add_monoid_algebra.gradesby` describe an internally graded algebra -/ lemma grade_by.is_internal : direct_sum.is_internal (grade_by R f) := direct_sum.decomposition.is_internal _ /-- `add_monoid_algebra.grades` describe an internally graded algebra -/ lemma grade.is_internal : direct_sum.is_internal (grade R : ι → submodule R _) := direct_sum.decomposition.is_internal _ end add_monoid_algebra