Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,397 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import linear_algebra.finsupp
import algebra.monoid_algebra.basic
import algebra.direct_sum.internal
import ring_theory.graded_algebra.basic
/-!
# Internal grading of an `add_monoid_algebra`
In this file, we show that an `add_monoid_algebra` has an internal direct sum structure.
## Main results
* `add_monoid_algebra.grade_by R f i`: the `i`th grade of an `add_monoid_algebra R M` given by the
degree function `f`.
* `add_monoid_algebra.grade R i`: the `i`th grade of an `add_monoid_algebra R M` when the degree
function is the identity.
* `add_monoid_algebra.grade_by.graded_algebra`: `add_monoid_algebra` is an algebra graded by
`add_monoid_algebra.grade_by`.
* `add_monoid_algebra.grade.graded_algebra`: `add_monoid_algebra` is an algebra graded by
`add_monoid_algebra.grade`.
* `add_monoid_algebra.grade_by.is_internal`: propositionally, the statement that
`add_monoid_algebra.grade_by` defines an internal graded structure.
* `add_monoid_algebra.grade.is_internal`: propositionally, the statement that
`add_monoid_algebra.grade` defines an internal graded structure when the degree function
is the identity.
-/
noncomputable theory
namespace add_monoid_algebra
variables {M : Type*} {ι : Type*} {R : Type*} [decidable_eq M]
section
variables (R) [comm_semiring R]
/-- The submodule corresponding to each grade given by the degree function `f`. -/
abbreviation grade_by (f : M → ι) (i : ι) : submodule R (add_monoid_algebra R M) :=
{ carrier := {a | ∀ m, m ∈ a.support → f m = i },
zero_mem' := set.empty_subset _,
add_mem' := λ a b ha hb m h,
or.rec_on (finset.mem_union.mp (finsupp.support_add h)) (ha m) (hb m),
smul_mem' := λ a m h, set.subset.trans finsupp.support_smul h }
/-- The submodule corresponding to each grade. -/
abbreviation grade (m : M) : submodule R (add_monoid_algebra R M) := grade_by R id m
lemma grade_by_id : grade_by R (id : M → M) = grade R := by refl
lemma mem_grade_by_iff (f : M → ι) (i : ι) (a : add_monoid_algebra R M) :
a ∈ grade_by R f i ↔ (a.support : set M) ⊆ f ⁻¹' {i} := by refl
lemma mem_grade_iff (m : M) (a : add_monoid_algebra R M) : a ∈ grade R m ↔ a.support ⊆ {m} :=
begin
rw [← finset.coe_subset, finset.coe_singleton],
refl
end
lemma mem_grade_iff' (m : M) (a : add_monoid_algebra R M) :
a ∈ grade R m ↔
a ∈ ((finsupp.lsingle m).range : submodule R (add_monoid_algebra R M)) :=
begin
rw [mem_grade_iff, finsupp.support_subset_singleton'],
apply exists_congr,
intros r,
split; exact eq.symm
end
lemma grade_eq_lsingle_range (m : M) : grade R m = (finsupp.lsingle m).range :=
submodule.ext (mem_grade_iff' R m)
lemma single_mem_grade_by {R} [comm_semiring R] (f : M → ι) (m : M) (r : R) :
finsupp.single m r ∈ grade_by R f (f m) :=
begin
intros x hx,
rw finset.mem_singleton.mp (finsupp.support_single_subset hx),
end
lemma single_mem_grade {R} [comm_semiring R] (i : M) (r : R) : finsupp.single i r ∈ grade R i :=
single_mem_grade_by _ _ _
end
open_locale direct_sum
instance grade_by.graded_monoid [add_monoid M] [add_monoid ι] [comm_semiring R] (f : M →+ ι) :
set_like.graded_monoid (grade_by R f : ι → submodule R (add_monoid_algebra R M)) :=
{ one_mem := λ m h, begin
rw one_def at h,
by_cases H : (1 : R) = (0 : R),
{ rw [H , finsupp.single_zero] at h,
exfalso,
exact h },
{ rw [finsupp.support_single_ne_zero _ H, finset.mem_singleton] at h,
rw [h, add_monoid_hom.map_zero] }
end,
mul_mem := λ i j a b ha hb c hc, begin
set h := support_mul a b hc,
simp only [finset.mem_bUnion] at h,
rcases h with ⟨ma, ⟨hma, ⟨mb, ⟨hmb, hmc⟩⟩⟩⟩,
rw [← ha ma hma, ← hb mb hmb, finset.mem_singleton.mp hmc],
apply add_monoid_hom.map_add
end }
instance grade.graded_monoid [add_monoid M] [comm_semiring R] :
set_like.graded_monoid (grade R : M → submodule R (add_monoid_algebra R M)) :=
by apply grade_by.graded_monoid (add_monoid_hom.id _)
variables {R} [add_monoid M] [decidable_eq ι] [add_monoid ι] [comm_semiring R] (f : M →+ ι)
/-- Auxiliary definition; the canonical grade decomposition, used to provide
`direct_sum.decompose`. -/
def decompose_aux : add_monoid_algebra R M →ₐ[R] ⨁ i : ι, grade_by R f i :=
add_monoid_algebra.lift R M _
{ to_fun := λ m, direct_sum.of (λ i : ι, grade_by R f i) (f m.to_add)
⟨finsupp.single m.to_add 1, single_mem_grade_by _ _ _⟩,
map_one' := direct_sum.of_eq_of_graded_monoid_eq (by congr' 2; try {ext};
simp only [submodule.mem_to_add_submonoid, to_add_one, add_monoid_hom.map_zero]),
map_mul' := λ i j, begin
symmetry,
convert direct_sum.of_mul_of _ _,
apply direct_sum.of_eq_of_graded_monoid_eq,
congr' 2,
{ rw [to_add_mul, add_monoid_hom.map_add] },
{ ext,
simp only [submodule.mem_to_add_submonoid, add_monoid_hom.map_add, to_add_mul] },
{ exact eq.trans (by rw [one_mul, to_add_mul]) single_mul_single.symm }
end }
lemma decompose_aux_single (m : M) (r : R) :
decompose_aux f (finsupp.single m r) =
direct_sum.of (λ i : ι, grade_by R f i) (f m)
⟨finsupp.single m r, single_mem_grade_by _ _ _⟩ :=
begin
refine (lift_single _ _ _).trans _,
refine (direct_sum.of_smul _ _ _ _).symm.trans _,
apply direct_sum.of_eq_of_graded_monoid_eq,
refine sigma.subtype_ext rfl _,
refine (finsupp.smul_single' _ _ _).trans _,
rw mul_one,
refl,
end
lemma decompose_aux_coe {i : ι} (x : grade_by R f i) :
decompose_aux f ↑x = direct_sum.of (λ i, grade_by R f i) i x :=
begin
obtain ⟨x, hx⟩ := x,
revert hx,
refine finsupp.induction x _ _,
{ intros hx,
symmetry,
exact add_monoid_hom.map_zero _ },
{ intros m b y hmy hb ih hmby,
have : disjoint (finsupp.single m b).support y.support,
{ simpa only [finsupp.support_single_ne_zero _ hb, finset.disjoint_singleton_left] },
rw [mem_grade_by_iff, finsupp.support_add_eq this, finset.coe_union,
set.union_subset_iff] at hmby,
cases hmby with h1 h2,
have : f m = i,
{ rwa [finsupp.support_single_ne_zero _ hb, finset.coe_singleton,
set.singleton_subset_iff] at h1 },
subst this,
simp only [alg_hom.map_add, submodule.coe_mk, decompose_aux_single f m],
let ih' := ih h2,
dsimp at ih',
rw [ih', ← add_monoid_hom.map_add],
apply direct_sum.of_eq_of_graded_monoid_eq,
congr' 2 }
end
instance grade_by.graded_algebra : graded_algebra (grade_by R f) :=
graded_algebra.of_alg_hom _
(decompose_aux f)
(begin
ext : 2,
dsimp,
rw [decompose_aux_single, direct_sum.coe_alg_hom_of, subtype.coe_mk],
end)
(λ i x, by convert (decompose_aux_coe f x : _))
-- Lean can't find this later without us repeating it
instance grade_by.decomposition : direct_sum.decomposition (grade_by R f) :=
by apply_instance
@[simp] lemma decompose_aux_eq_decompose :
⇑(decompose_aux f : add_monoid_algebra R M →ₐ[R] ⨁ i : ι, grade_by R f i) =
(direct_sum.decompose (grade_by R f)) := rfl
@[simp] lemma grades_by.decompose_single (m : M) (r : R) :
direct_sum.decompose (grade_by R f) (finsupp.single m r) =
direct_sum.of (λ i : ι, grade_by R f i) (f m)
⟨finsupp.single m r, single_mem_grade_by _ _ _⟩ :=
decompose_aux_single _ _ _
instance grade.graded_algebra : graded_algebra (grade R : ι → submodule _ _) :=
add_monoid_algebra.grade_by.graded_algebra (add_monoid_hom.id _)
-- Lean can't find this later without us repeating it
instance grade.decomposition : direct_sum.decomposition (grade R : ι → submodule _ _) :=
by apply_instance
@[simp]
lemma grade.decompose_single (i : ι) (r : R) :
direct_sum.decompose (grade R : ι → submodule _ _) (finsupp.single i r) =
direct_sum.of (λ i : ι, grade R i) i ⟨finsupp.single i r, single_mem_grade _ _⟩ :=
decompose_aux_single _ _ _
/-- `add_monoid_algebra.gradesby` describe an internally graded algebra -/
lemma grade_by.is_internal : direct_sum.is_internal (grade_by R f) :=
direct_sum.decomposition.is_internal _
/-- `add_monoid_algebra.grades` describe an internally graded algebra -/
lemma grade.is_internal : direct_sum.is_internal (grade R : ι → submodule R _) :=
direct_sum.decomposition.is_internal _
end add_monoid_algebra
|