Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
67.7 kB
/-
Copyright (c) 2017 Johannes HΓΆlzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes HΓΆlzl, Yury G. Kudryashov, Scott Morrison
-/
import algebra.big_operators.finsupp
import algebra.hom.non_unital_alg
import linear_algebra.finsupp
/-!
# Monoid algebras
When the domain of a `finsupp` has a multiplicative or additive structure, we can define
a convolution product. To mathematicians this structure is known as the "monoid algebra",
i.e. the finite formal linear combinations over a given semiring of elements of the monoid.
The "group ring" β„€[G] or the "group algebra" k[G] are typical uses.
In fact the construction of the "monoid algebra" makes sense when `G` is not even a monoid, but
merely a magma, i.e., when `G` carries a multiplication which is not required to satisfy any
conditions at all. In this case the construction yields a not-necessarily-unital,
not-necessarily-associative algebra but it is still adjoint to the forgetful functor from such
algebras to magmas, and we prove this as `monoid_algebra.lift_magma`.
In this file we define `monoid_algebra k G := G β†’β‚€ k`, and `add_monoid_algebra k G`
in the same way, and then define the convolution product on these.
When the domain is additive, this is used to define polynomials:
```
polynomial Ξ± := add_monoid_algebra β„• Ξ±
mv_polynomial Οƒ Ξ± := add_monoid_algebra (Οƒ β†’β‚€ β„•) Ξ±
```
When the domain is multiplicative, e.g. a group, this will be used to define the group ring.
## Implementation note
Unfortunately because additive and multiplicative structures both appear in both cases,
it doesn't appear to be possible to make much use of `to_additive`, and we just settle for
saying everything twice.
Similarly, I attempted to just define
`add_monoid_algebra k G := monoid_algebra k (multiplicative G)`, but the definitional equality
`multiplicative G = G` leaks through everywhere, and seems impossible to use.
-/
noncomputable theory
open_locale big_operators
open finset finsupp
universes u₁ uβ‚‚ u₃
variables (k : Type u₁) (G : Type uβ‚‚) {R : Type*}
/-! ### Multiplicative monoids -/
section
variables [semiring k]
/--
The monoid algebra over a semiring `k` generated by the monoid `G`.
It is the type of finite formal `k`-linear combinations of terms of `G`,
endowed with the convolution product.
-/
@[derive [inhabited, add_comm_monoid]]
def monoid_algebra : Type (max u₁ uβ‚‚) := G β†’β‚€ k
instance : has_coe_to_fun (monoid_algebra k G) (Ξ» _, G β†’ k) :=
finsupp.has_coe_to_fun
end
namespace monoid_algebra
variables {k G}
section
variables [semiring k] [non_unital_non_assoc_semiring R]
/-- A non-commutative version of `monoid_algebra.lift`: given a additive homomorphism `f : k β†’+ R`
and a homomorphism `g : G β†’ R`, returns the additive homomorphism from
`monoid_algebra k G` such that `lift_nc f g (single a b) = f b * g a`. If `f` is a ring homomorphism
and the range of either `f` or `g` is in center of `R`, then the result is a ring homomorphism. If
`R` is a `k`-algebra and `f = algebra_map k R`, then the result is an algebra homomorphism called
`monoid_algebra.lift`. -/
def lift_nc (f : k β†’+ R) (g : G β†’ R) : monoid_algebra k G β†’+ R :=
lift_add_hom (Ξ» x : G, (add_monoid_hom.mul_right (g x)).comp f)
@[simp] lemma lift_nc_single (f : k β†’+ R) (g : G β†’ R) (a : G) (b : k) :
lift_nc f g (single a b) = f b * g a :=
lift_add_hom_apply_single _ _ _
end
section has_mul
variables [semiring k] [has_mul G]
/-- The product of `f g : monoid_algebra k G` is the finitely supported function
whose value at `a` is the sum of `f x * g y` over all pairs `x, y`
such that `x * y = a`. (Think of the group ring of a group.) -/
instance : has_mul (monoid_algebra k G) :=
⟨λf g, f.sum $ Ξ»a₁ b₁, g.sum $ Ξ»aβ‚‚ bβ‚‚, single (a₁ * aβ‚‚) (b₁ * bβ‚‚)⟩
lemma mul_def {f g : monoid_algebra k G} :
f * g = (f.sum $ Ξ»a₁ b₁, g.sum $ Ξ»aβ‚‚ bβ‚‚, single (a₁ * aβ‚‚) (b₁ * bβ‚‚)) :=
rfl
instance : non_unital_non_assoc_semiring (monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
left_distrib := assume f g h, by simp only [mul_def, sum_add_index, mul_add, mul_zero,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add],
right_distrib := assume f g h, by simp only [mul_def, sum_add_index, add_mul, zero_mul,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero,
sum_add],
zero_mul := assume f, by simp only [mul_def, sum_zero_index],
mul_zero := assume f, by simp only [mul_def, sum_zero_index, sum_zero],
.. finsupp.add_comm_monoid }
variables [semiring R]
lemma lift_nc_mul {g_hom : Type*} [mul_hom_class g_hom G R] (f : k β†’+* R) (g : g_hom)
(a b : monoid_algebra k G) (h_comm : βˆ€ {x y}, y ∈ a.support β†’ commute (f (b x)) (g y)) :
lift_nc (f : k β†’+ R) g (a * b) = lift_nc (f : k β†’+ R) g a * lift_nc (f : k β†’+ R) g b :=
begin
conv_rhs { rw [← sum_single a, ← sum_single b] },
simp_rw [mul_def, (lift_nc _ g).map_finsupp_sum, lift_nc_single, finsupp.sum_mul,
finsupp.mul_sum],
refine finset.sum_congr rfl (Ξ» y hy, finset.sum_congr rfl (Ξ» x hx, _)),
simp [mul_assoc, (h_comm hy).left_comm]
end
end has_mul
section semigroup
variables [semiring k] [semigroup G] [semiring R]
instance : non_unital_semiring (monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index,
sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff,
add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add],
.. monoid_algebra.non_unital_non_assoc_semiring}
end semigroup
section has_one
variables [non_assoc_semiring R] [semiring k] [has_one G]
/-- The unit of the multiplication is `single 1 1`, i.e. the function
that is `1` at `1` and zero elsewhere. -/
instance : has_one (monoid_algebra k G) :=
⟨single 1 1⟩
lemma one_def : (1 : monoid_algebra k G) = single 1 1 :=
rfl
@[simp] lemma lift_nc_one {g_hom : Type*} [one_hom_class g_hom G R] (f : k β†’+* R) (g : g_hom) :
lift_nc (f : k β†’+ R) g 1 = 1 :=
by simp [one_def]
end has_one
section mul_one_class
variables [semiring k] [mul_one_class G]
instance : non_assoc_semiring (monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
nat_cast := Ξ» n, single 1 n,
nat_cast_zero := by simp [nat.cast],
nat_cast_succ := Ξ» _, by simp [nat.cast]; refl,
one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul,
single_zero, sum_zero, zero_add, one_mul, sum_single],
mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero,
single_zero, sum_zero, add_zero, mul_one, sum_single],
..monoid_algebra.non_unital_non_assoc_semiring }
lemma nat_cast_def (n : β„•) : (n : monoid_algebra k G) = single 1 n := rfl
end mul_one_class
/-! #### Semiring structure -/
section semiring
variables [semiring k] [monoid G]
instance : semiring (monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
.. monoid_algebra.non_unital_semiring,
.. monoid_algebra.non_assoc_semiring }
variables [semiring R]
/-- `lift_nc` as a `ring_hom`, for when `f x` and `g y` commute -/
def lift_nc_ring_hom (f : k β†’+* R) (g : G β†’* R) (h_comm : βˆ€ x y, commute (f x) (g y)) :
monoid_algebra k G β†’+* R :=
{ to_fun := lift_nc (f : k β†’+ R) g,
map_one' := lift_nc_one _ _,
map_mul' := Ξ» a b, lift_nc_mul _ _ _ _ $ Ξ» _ _ _, h_comm _ _,
..(lift_nc (f : k β†’+ R) g)}
end semiring
instance [comm_semiring k] [comm_semigroup G] : non_unital_comm_semiring (monoid_algebra k G) :=
{ mul_comm := assume f g,
begin
simp only [mul_def, finsupp.sum, mul_comm],
rw [finset.sum_comm],
simp only [mul_comm]
end,
.. monoid_algebra.non_unital_semiring }
instance [semiring k] [nontrivial k] [nonempty G]: nontrivial (monoid_algebra k G) :=
finsupp.nontrivial
/-! #### Derived instances -/
section derived_instances
instance [comm_semiring k] [comm_monoid G] : comm_semiring (monoid_algebra k G) :=
{ .. monoid_algebra.non_unital_comm_semiring,
.. monoid_algebra.semiring }
instance [semiring k] [subsingleton k] : unique (monoid_algebra k G) :=
finsupp.unique_of_right
instance [ring k] : add_comm_group (monoid_algebra k G) :=
finsupp.add_comm_group
instance [ring k] [has_mul G] : non_unital_non_assoc_ring (monoid_algebra k G) :=
{ .. monoid_algebra.add_comm_group,
.. monoid_algebra.non_unital_non_assoc_semiring }
instance [ring k] [semigroup G] : non_unital_ring (monoid_algebra k G) :=
{ .. monoid_algebra.add_comm_group,
.. monoid_algebra.non_unital_semiring }
instance [ring k] [mul_one_class G] : non_assoc_ring (monoid_algebra k G) :=
{ int_cast := Ξ» z, single 1 (z : k),
int_cast_of_nat := Ξ» n, by simpa,
int_cast_neg_succ_of_nat := Ξ» n, by simpa,
.. monoid_algebra.add_comm_group,
.. monoid_algebra.non_assoc_semiring }
lemma int_cast_def [ring k] [mul_one_class G] (z : β„€) : (z : monoid_algebra k G) = single 1 z := rfl
instance [ring k] [monoid G] : ring (monoid_algebra k G) :=
{ .. monoid_algebra.non_assoc_ring,
.. monoid_algebra.semiring }
instance [comm_ring k] [comm_semigroup G] : non_unital_comm_ring (monoid_algebra k G) :=
{ .. monoid_algebra.non_unital_comm_semiring,
.. monoid_algebra.non_unital_ring }
instance [comm_ring k] [comm_monoid G] : comm_ring (monoid_algebra k G) :=
{ .. monoid_algebra.non_unital_comm_ring,
.. monoid_algebra.ring }
variables {S : Type*}
instance [monoid R] [semiring k] [distrib_mul_action R k] :
has_smul R (monoid_algebra k G) :=
finsupp.has_smul
instance [monoid R] [semiring k] [distrib_mul_action R k] :
distrib_mul_action R (monoid_algebra k G) :=
finsupp.distrib_mul_action G k
instance [semiring R] [semiring k] [module R k] :
module R (monoid_algebra k G) :=
finsupp.module G k
instance [monoid R] [semiring k] [distrib_mul_action R k] [has_faithful_smul R k] [nonempty G] :
has_faithful_smul R (monoid_algebra k G) :=
finsupp.has_faithful_smul
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[has_smul R S] [is_scalar_tower R S k] :
is_scalar_tower R S (monoid_algebra k G) :=
finsupp.is_scalar_tower G k
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[smul_comm_class R S k] :
smul_comm_class R S (monoid_algebra k G) :=
finsupp.smul_comm_class G k
instance [monoid R] [semiring k] [distrib_mul_action R k] [distrib_mul_action Rᡐᡒᡖ k]
[is_central_scalar R k] :
is_central_scalar R (monoid_algebra k G) :=
finsupp.is_central_scalar G k
/-- This is not an instance as it conflicts with `monoid_algebra.distrib_mul_action` when `G = kΛ£`.
-/
def comap_distrib_mul_action_self [group G] [semiring k] :
distrib_mul_action G (monoid_algebra k G) :=
finsupp.comap_distrib_mul_action
end derived_instances
section misc_theorems
variables [semiring k]
local attribute [reducible] monoid_algebra
lemma mul_apply [decidable_eq G] [has_mul G] (f g : monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ Ξ»a₁ b₁, g.sum $ Ξ»aβ‚‚ bβ‚‚, if a₁ * aβ‚‚ = x then b₁ * bβ‚‚ else 0) :=
begin
rw [mul_def],
simp only [finsupp.sum_apply, single_apply],
end
lemma mul_apply_antidiagonal [has_mul G] (f g : monoid_algebra k G) (x : G) (s : finset (G Γ— G))
(hs : βˆ€ {p : G Γ— G}, p ∈ s ↔ p.1 * p.2 = x) :
(f * g) x = βˆ‘ p in s, (f p.1 * g p.2) :=
let F : G Γ— G β†’ k := Ξ» p, by classical; exact if p.1 * p.2 = x then f p.1 * g p.2 else 0 in
calc (f * g) x = (βˆ‘ a₁ in f.support, βˆ‘ aβ‚‚ in g.support, F (a₁, aβ‚‚)) :
mul_apply f g x
... = βˆ‘ p in f.support Γ—Λ’ g.support, F p : finset.sum_product.symm
... = βˆ‘ p in (f.support Γ—Λ’ g.support).filter (Ξ» p : G Γ— G, p.1 * p.2 = x), f p.1 * g p.2 :
(finset.sum_filter _ _).symm
... = βˆ‘ p in s.filter (Ξ» p : G Γ— G, p.1 ∈ f.support ∧ p.2 ∈ g.support), f p.1 * g p.2 :
sum_congr (by { ext, simp only [mem_filter, mem_product, hs, and_comm] }) (Ξ» _ _, rfl)
... = βˆ‘ p in s, f p.1 * g p.2 : sum_subset (filter_subset _ _) $ Ξ» p hps hp,
begin
simp only [mem_filter, mem_support_iff, not_and, not_not] at hp ⊒,
by_cases h1 : f p.1 = 0,
{ rw [h1, zero_mul] },
{ rw [hp hps h1, mul_zero] }
end
lemma support_mul [has_mul G] [decidable_eq G] (a b : monoid_algebra k G) :
(a * b).support βŠ† a.support.bUnion (Ξ»a₁, b.support.bUnion $ Ξ»aβ‚‚, {a₁ * aβ‚‚}) :=
subset.trans support_sum $ bUnion_mono $ assume a₁ _,
subset.trans support_sum $ bUnion_mono $ assume aβ‚‚ _, support_single_subset
@[simp] lemma single_mul_single [has_mul G] {a₁ aβ‚‚ : G} {b₁ bβ‚‚ : k} :
(single a₁ b₁ : monoid_algebra k G) * single aβ‚‚ bβ‚‚ = single (a₁ * aβ‚‚) (b₁ * bβ‚‚) :=
(sum_single_index (by simp only [zero_mul, single_zero, sum_zero])).trans
(sum_single_index (by rw [mul_zero, single_zero]))
@[simp] lemma single_pow [monoid G] {a : G} {b : k} :
βˆ€ n : β„•, (single a b : monoid_algebra k G)^n = single (a^n) (b ^ n)
| 0 := by { simp only [pow_zero], refl }
| (n+1) := by simp only [pow_succ, single_pow n, single_mul_single]
section
/-- Like `finsupp.map_domain_zero`, but for the `1` we define in this file -/
@[simp] lemma map_domain_one {Ξ± : Type*} {Ξ² : Type*} {Ξ±β‚‚ : Type*}
[semiring Ξ²] [has_one Ξ±] [has_one Ξ±β‚‚] {F : Type*} [one_hom_class F Ξ± Ξ±β‚‚] (f : F) :
(map_domain f (1 : monoid_algebra Ξ² Ξ±) : monoid_algebra Ξ² Ξ±β‚‚) = (1 : monoid_algebra Ξ² Ξ±β‚‚) :=
by simp_rw [one_def, map_domain_single, map_one]
/-- Like `finsupp.map_domain_add`, but for the convolutive multiplication we define in this file -/
lemma map_domain_mul {Ξ± : Type*} {Ξ² : Type*} {Ξ±β‚‚ : Type*} [semiring Ξ²] [has_mul Ξ±] [has_mul Ξ±β‚‚]
{F : Type*} [mul_hom_class F Ξ± Ξ±β‚‚] (f : F) (x y : monoid_algebra Ξ² Ξ±) :
(map_domain f (x * y : monoid_algebra Ξ² Ξ±) : monoid_algebra Ξ² Ξ±β‚‚) =
(map_domain f x * map_domain f y : monoid_algebra Ξ² Ξ±β‚‚) :=
begin
simp_rw [mul_def, map_domain_sum, map_domain_single, map_mul],
rw finsupp.sum_map_domain_index,
{ congr,
ext a b,
rw finsupp.sum_map_domain_index,
{ simp },
{ simp [mul_add] } },
{ simp },
{ simp [add_mul] }
end
variables (k G)
/-- The embedding of a magma into its magma algebra. -/
@[simps] def of_magma [has_mul G] : G β†’β‚™* (monoid_algebra k G) :=
{ to_fun := Ξ» a, single a 1,
map_mul' := Ξ» a b, by simp only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero], }
/-- The embedding of a unital magma into its magma algebra. -/
@[simps] def of [mul_one_class G] : G β†’* monoid_algebra k G :=
{ to_fun := Ξ» a, single a 1,
map_one' := rfl,
.. of_magma k G }
end
lemma smul_of [mul_one_class G] (g : G) (r : k) :
r β€’ (of k G g) = single g r := by simp
lemma of_injective [mul_one_class G] [nontrivial k] : function.injective (of k G) :=
Ξ» a b h, by simpa using (single_eq_single_iff _ _ _ _).mp h
/--
`finsupp.single` as a `monoid_hom` from the product type into the monoid algebra.
Note the order of the elements of the product are reversed compared to the arguments of
`finsupp.single`.
-/
@[simps] def single_hom [mul_one_class G] : k Γ— G β†’* monoid_algebra k G :=
{ to_fun := Ξ» a, single a.2 a.1,
map_one' := rfl,
map_mul' := Ξ» a b, single_mul_single.symm }
lemma mul_single_apply_aux [has_mul G] (f : monoid_algebra k G) {r : k}
{x y z : G} (H : βˆ€ a, a * x = z ↔ a = y) :
(f * single x r) z = f y * r :=
by classical; exact
have A : βˆ€ a₁ b₁, (single x r).sum (Ξ» aβ‚‚ bβ‚‚, ite (a₁ * aβ‚‚ = z) (b₁ * bβ‚‚) 0) =
ite (a₁ * x = z) (b₁ * r) 0,
from Ξ» a₁ b₁, sum_single_index $ by simp,
calc (f * single x r) z = sum f (Ξ» a b, if (a = y) then (b * r) else 0) :
by simp only [mul_apply, A, H]
... = if y ∈ f.support then f y * r else 0 : f.support.sum_ite_eq' _ _
... = f y * r : by split_ifs with h; simp at h; simp [h]
lemma mul_single_one_apply [mul_one_class G] (f : monoid_algebra k G) (r : k) (x : G) :
(f * single 1 r) x = f x * r :=
f.mul_single_apply_aux $ Ξ» a, by rw [mul_one]
lemma support_mul_single [right_cancel_semigroup G]
(f : monoid_algebra k G) (r : k) (hr : βˆ€ y, y * r = 0 ↔ y = 0) (x : G) :
(f * single x r).support = f.support.map (mul_right_embedding x) :=
begin
ext y, simp only [mem_support_iff, mem_map, exists_prop, mul_right_embedding_apply],
by_cases H : βˆƒ a, a * x = y,
{ rcases H with ⟨a, rfl⟩,
rw [mul_single_apply_aux f (Ξ» _, mul_left_inj x)],
simp [hr] },
{ push_neg at H,
classical,
simp [mul_apply, H] }
end
lemma single_mul_apply_aux [has_mul G] (f : monoid_algebra k G) {r : k} {x y z : G}
(H : βˆ€ a, x * a = y ↔ a = z) :
(single x r * f) y = r * f z :=
by classical; exact (
have f.sum (Ξ» a b, ite (x * a = y) (0 * b) 0) = 0, by simp,
calc (single x r * f) y = sum f (Ξ» a b, ite (x * a = y) (r * b) 0) :
(mul_apply _ _ _).trans $ sum_single_index (by exact this)
... = f.sum (Ξ» a b, ite (a = z) (r * b) 0) : by simp only [H]
... = if z ∈ f.support then (r * f z) else 0 : f.support.sum_ite_eq' _ _
... = _ : by split_ifs with h; simp at h; simp [h])
lemma single_one_mul_apply [mul_one_class G] (f : monoid_algebra k G) (r : k) (x : G) :
(single 1 r * f) x = r * f x :=
f.single_mul_apply_aux $ Ξ» a, by rw [one_mul]
lemma support_single_mul [left_cancel_semigroup G]
(f : monoid_algebra k G) (r : k) (hr : βˆ€ y, r * y = 0 ↔ y = 0) (x : G) :
(single x r * f).support = f.support.map (mul_left_embedding x) :=
begin
ext y, simp only [mem_support_iff, mem_map, exists_prop, mul_left_embedding_apply],
by_cases H : βˆƒ a, x * a = y,
{ rcases H with ⟨a, rfl⟩,
rw [single_mul_apply_aux f (Ξ» _, mul_right_inj x)],
simp [hr] },
{ push_neg at H,
classical,
simp [mul_apply, H] }
end
lemma lift_nc_smul [mul_one_class G] {R : Type*} [semiring R] (f : k β†’+* R) (g : G β†’* R) (c : k)
(Ο† : monoid_algebra k G) :
lift_nc (f : k β†’+ R) g (c β€’ Ο†) = f c * lift_nc (f : k β†’+ R) g Ο† :=
begin
suffices : (lift_nc ↑f g).comp (smul_add_hom k (monoid_algebra k G) c) =
(add_monoid_hom.mul_left (f c)).comp (lift_nc ↑f g),
from add_monoid_hom.congr_fun this Ο†,
ext a b, simp [mul_assoc]
end
end misc_theorems
/-! #### Non-unital, non-associative algebra structure -/
section non_unital_non_assoc_algebra
variables (k) [monoid R] [semiring k] [distrib_mul_action R k] [has_mul G]
instance is_scalar_tower_self [is_scalar_tower R k k] :
is_scalar_tower R (monoid_algebra k G) (monoid_algebra k G) :=
⟨λ t a b,
begin
ext m,
classical,
simp only [mul_apply, finsupp.smul_sum, smul_ite, smul_mul_assoc, sum_smul_index', zero_mul,
if_t_t, implies_true_iff, eq_self_iff_true, sum_zero, coe_smul, smul_eq_mul, pi.smul_apply,
smul_zero],
end⟩
/-- Note that if `k` is a `comm_semiring` then we have `smul_comm_class k k k` and so we can take
`R = k` in the below. In other words, if the coefficients are commutative amongst themselves, they
also commute with the algebra multiplication. -/
instance smul_comm_class_self [smul_comm_class R k k] :
smul_comm_class R (monoid_algebra k G) (monoid_algebra k G) :=
⟨λ t a b,
begin
ext m,
simp only [mul_apply, finsupp.sum, finset.smul_sum, smul_ite, mul_smul_comm, sum_smul_index',
implies_true_iff, eq_self_iff_true, coe_smul, ite_eq_right_iff, smul_eq_mul, pi.smul_apply,
mul_zero, smul_zero],
end⟩
instance smul_comm_class_symm_self [smul_comm_class k R k] :
smul_comm_class (monoid_algebra k G) R (monoid_algebra k G) :=
⟨λ t a b, by { haveI := smul_comm_class.symm k R k, rw ← smul_comm, } ⟩
variables {A : Type u₃} [non_unital_non_assoc_semiring A]
/-- A non_unital `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma non_unital_alg_hom_ext [distrib_mul_action k A]
{φ₁ Ο†β‚‚ : monoid_algebra k G →ₙₐ[k] A}
(h : βˆ€ x, φ₁ (single x 1) = Ο†β‚‚ (single x 1)) : φ₁ = Ο†β‚‚ :=
non_unital_alg_hom.to_distrib_mul_action_hom_injective $
finsupp.distrib_mul_action_hom_ext' $
Ξ» a, distrib_mul_action_hom.ext_ring (h a)
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma non_unital_alg_hom_ext' [distrib_mul_action k A]
{φ₁ Ο†β‚‚ : monoid_algebra k G →ₙₐ[k] A}
(h : φ₁.to_mul_hom.comp (of_magma k G) = Ο†β‚‚.to_mul_hom.comp (of_magma k G)) : φ₁ = Ο†β‚‚ :=
non_unital_alg_hom_ext k $ mul_hom.congr_fun h
/-- The functor `G ↦ monoid_algebra k G`, from the category of magmas to the category of non-unital,
non-associative algebras over `k` is adjoint to the forgetful functor in the other direction. -/
@[simps] def lift_magma [module k A] [is_scalar_tower k A A] [smul_comm_class k A A] :
(G β†’β‚™* A) ≃ (monoid_algebra k G →ₙₐ[k] A) :=
{ to_fun := Ξ» f,
{ to_fun := Ξ» a, a.sum (Ξ» m t, t β€’ f m),
map_smul' := Ξ» t' a,
begin
rw [finsupp.smul_sum, sum_smul_index'],
{ simp_rw smul_assoc, },
{ intros m, exact zero_smul k (f m), },
end,
map_mul' := Ξ» a₁ aβ‚‚,
begin
let g : G β†’ k β†’ A := Ξ» m t, t β€’ f m,
have h₁ : βˆ€ m, g m 0 = 0, { intros, exact zero_smul k (f m), },
have hβ‚‚ : βˆ€ m (t₁ tβ‚‚ : k), g m (t₁ + tβ‚‚) = g m t₁ + g m tβ‚‚, { intros, rw ← add_smul, },
simp_rw [finsupp.mul_sum, finsupp.sum_mul, smul_mul_smul, ← f.map_mul, mul_def,
sum_comm aβ‚‚ a₁, sum_sum_index h₁ hβ‚‚, sum_single_index (h₁ _)],
end,
.. lift_add_hom (Ξ» x, (smul_add_hom k A).flip (f x)) },
inv_fun := Ξ» F, F.to_mul_hom.comp (of_magma k G),
left_inv := Ξ» f, by { ext m, simp only [non_unital_alg_hom.coe_mk, of_magma_apply,
non_unital_alg_hom.to_mul_hom_eq_coe, sum_single_index, function.comp_app, one_smul, zero_smul,
mul_hom.coe_comp, non_unital_alg_hom.coe_to_mul_hom], },
right_inv := Ξ» F, by { ext m, simp only [non_unital_alg_hom.coe_mk, of_magma_apply,
non_unital_alg_hom.to_mul_hom_eq_coe, sum_single_index, function.comp_app, one_smul, zero_smul,
mul_hom.coe_comp, non_unital_alg_hom.coe_to_mul_hom], }, }
end non_unital_non_assoc_algebra
/-! #### Algebra structure -/
section algebra
local attribute [reducible] monoid_algebra
lemma single_one_comm [comm_semiring k] [mul_one_class G] (r : k) (f : monoid_algebra k G) :
single 1 r * f = f * single 1 r :=
by { ext, rw [single_one_mul_apply, mul_single_one_apply, mul_comm] }
/-- `finsupp.single 1` as a `ring_hom` -/
@[simps] def single_one_ring_hom [semiring k] [mul_one_class G] : k β†’+* monoid_algebra k G :=
{ map_one' := rfl,
map_mul' := Ξ» x y, by rw [single_add_hom, single_mul_single, one_mul],
..finsupp.single_add_hom 1}
/-- If `f : G β†’ H` is a multiplicative homomorphism between two monoids, then
`finsupp.map_domain f` is a ring homomorphism between their monoid algebras. -/
@[simps]
def map_domain_ring_hom (k : Type*) {H F : Type*} [semiring k] [monoid G] [monoid H]
[monoid_hom_class F G H] (f : F) :
monoid_algebra k G β†’+* monoid_algebra k H :=
{ map_one' := map_domain_one f,
map_mul' := Ξ» x y, map_domain_mul f x y,
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra k G β†’+ monoid_algebra k H) }
/-- If two ring homomorphisms from `monoid_algebra k G` are equal on all `single a 1`
and `single 1 b`, then they are equal. -/
lemma ring_hom_ext {R} [semiring k] [mul_one_class G] [semiring R]
{f g : monoid_algebra k G β†’+* R} (h₁ : βˆ€ b, f (single 1 b) = g (single 1 b))
(h_of : βˆ€ a, f (single a 1) = g (single a 1)) : f = g :=
ring_hom.coe_add_monoid_hom_injective $ add_hom_ext $ Ξ» a b,
by rw [← one_mul a, ← mul_one b, ← single_mul_single, f.coe_add_monoid_hom,
g.coe_add_monoid_hom, f.map_mul, g.map_mul, h₁, h_of]
/-- If two ring homomorphisms from `monoid_algebra k G` are equal on all `single a 1`
and `single 1 b`, then they are equal.
See note [partially-applied ext lemmas]. -/
@[ext] lemma ring_hom_ext' {R} [semiring k] [mul_one_class G] [semiring R]
{f g : monoid_algebra k G β†’+* R} (h₁ : f.comp single_one_ring_hom = g.comp single_one_ring_hom)
(h_of : (f : monoid_algebra k G β†’* R).comp (of k G) =
(g : monoid_algebra k G β†’* R).comp (of k G)) :
f = g :=
ring_hom_ext (ring_hom.congr_fun h₁) (monoid_hom.congr_fun h_of)
/--
The instance `algebra k (monoid_algebra A G)` whenever we have `algebra k A`.
In particular this provides the instance `algebra k (monoid_algebra k G)`.
-/
instance {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] :
algebra k (monoid_algebra A G) :=
{ smul_def' := Ξ» r a, by { ext, simp [single_one_mul_apply, algebra.smul_def, pi.smul_apply], },
commutes' := Ξ» r f, by { ext, simp [single_one_mul_apply, mul_single_one_apply,
algebra.commutes], },
..single_one_ring_hom.comp (algebra_map k A) }
/-- `finsupp.single 1` as a `alg_hom` -/
@[simps]
def single_one_alg_hom {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] :
A →ₐ[k] monoid_algebra A G :=
{ commutes' := Ξ» r, by { ext, simp, refl, }, ..single_one_ring_hom}
@[simp] lemma coe_algebra_map {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] :
⇑(algebra_map k (monoid_algebra A G)) = single 1 ∘ (algebra_map k A) :=
rfl
lemma single_eq_algebra_map_mul_of [comm_semiring k] [monoid G] (a : G) (b : k) :
single a b = algebra_map k (monoid_algebra k G) b * of k G a :=
by simp
lemma single_algebra_map_eq_algebra_map_mul_of {A : Type*} [comm_semiring k] [semiring A]
[algebra k A] [monoid G] (a : G) (b : k) :
single a (algebra_map k A b) = algebra_map k (monoid_algebra A G) b * of A G a :=
by simp
lemma induction_on [semiring k] [monoid G] {p : monoid_algebra k G β†’ Prop} (f : monoid_algebra k G)
(hM : βˆ€ g, p (of k G g)) (hadd : βˆ€ f g : monoid_algebra k G, p f β†’ p g β†’ p (f + g))
(hsmul : βˆ€ (r : k) f, p f β†’ p (r β€’ f)) : p f :=
begin
refine finsupp.induction_linear f _ (Ξ» f g hf hg, hadd f g hf hg) (Ξ» g r, _),
{ simpa using hsmul 0 (of k G 1) (hM 1) },
{ convert hsmul r (of k G g) (hM g),
simp only [mul_one, smul_single', of_apply] },
end
end algebra
section lift
variables {k G} [comm_semiring k] [monoid G]
variables {A : Type u₃} [semiring A] [algebra k A] {B : Type*} [semiring B] [algebra k B]
/-- `lift_nc_ring_hom` as a `alg_hom`, for when `f` is an `alg_hom` -/
def lift_nc_alg_hom (f : A →ₐ[k] B) (g : G β†’* B) (h_comm : βˆ€ x y, commute (f x) (g y)) :
monoid_algebra A G →ₐ[k] B :=
{ to_fun := lift_nc_ring_hom (f : A β†’+* B) g h_comm,
commutes' := by simp [lift_nc_ring_hom],
..(lift_nc_ring_hom (f : A β†’+* B) g h_comm)}
/-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma alg_hom_ext ⦃φ₁ Ο†β‚‚ : monoid_algebra k G →ₐ[k] A⦄
(h : βˆ€ x, φ₁ (single x 1) = Ο†β‚‚ (single x 1)) : φ₁ = Ο†β‚‚ :=
alg_hom.to_linear_map_injective $ finsupp.lhom_ext' $ Ξ» a, linear_map.ext_ring (h a)
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma alg_hom_ext' ⦃φ₁ Ο†β‚‚ : monoid_algebra k G →ₐ[k] A⦄
(h : (φ₁ : monoid_algebra k G β†’* A).comp (of k G) =
(Ο†β‚‚ : monoid_algebra k G β†’* A).comp (of k G)) : φ₁ = Ο†β‚‚ :=
alg_hom_ext $ monoid_hom.congr_fun h
variables (k G A)
/-- Any monoid homomorphism `G β†’* A` can be lifted to an algebra homomorphism
`monoid_algebra k G →ₐ[k] A`. -/
def lift : (G β†’* A) ≃ (monoid_algebra k G →ₐ[k] A) :=
{ inv_fun := Ξ» f, (f : monoid_algebra k G β†’* A).comp (of k G),
to_fun := Ξ» F, lift_nc_alg_hom (algebra.of_id k A) F $ Ξ» _ _, algebra.commutes _ _,
left_inv := Ξ» f, by { ext, simp [lift_nc_alg_hom, lift_nc_ring_hom] },
right_inv := Ξ» F, by { ext, simp [lift_nc_alg_hom, lift_nc_ring_hom] } }
variables {k G A}
lemma lift_apply' (F : G β†’* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (Ξ» a b, (algebra_map k A b) * F a) := rfl
lemma lift_apply (F : G β†’* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (Ξ» a b, b β€’ F a) :=
by simp only [lift_apply', algebra.smul_def]
lemma lift_def (F : G β†’* A) :
⇑(lift k G A F) = lift_nc ((algebra_map k A : k β†’+* A) : k β†’+ A) F :=
rfl
@[simp] lemma lift_symm_apply (F : monoid_algebra k G →ₐ[k] A) (x : G) :
(lift k G A).symm F x = F (single x 1) := rfl
lemma lift_of (F : G β†’* A) (x) :
lift k G A F (of k G x) = F x :=
by rw [of_apply, ← lift_symm_apply, equiv.symm_apply_apply]
@[simp] lemma lift_single (F : G β†’* A) (a b) :
lift k G A F (single a b) = b β€’ F a :=
by rw [lift_def, lift_nc_single, algebra.smul_def, ring_hom.coe_add_monoid_hom]
lemma lift_unique' (F : monoid_algebra k G →ₐ[k] A) :
F = lift k G A ((F : monoid_algebra k G β†’* A).comp (of k G)) :=
((lift k G A).apply_symm_apply F).symm
/-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by
its values on `F (single a 1)`. -/
lemma lift_unique (F : monoid_algebra k G →ₐ[k] A) (f : monoid_algebra k G) :
F f = f.sum (Ξ» a b, b β€’ F (single a 1)) :=
by conv_lhs { rw lift_unique' F, simp [lift_apply] }
/-- If `f : G β†’ H` is a homomorphism between two magmas, then
`finsupp.map_domain f` is a non-unital algebra homomorphism between their magma algebras. -/
@[simps]
def map_domain_non_unital_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A]
{G H F : Type*} [has_mul G] [has_mul H] [mul_hom_class F G H] (f : F) :
monoid_algebra A G →ₙₐ[k] monoid_algebra A H :=
{ map_mul' := Ξ» x y, map_domain_mul f x y,
map_smul' := Ξ» r x, map_domain_smul r x,
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra A G β†’+ monoid_algebra A H) }
lemma map_domain_algebra_map (k A : Type*) {H F : Type*} [comm_semiring k] [semiring A]
[algebra k A] [monoid H] [monoid_hom_class F G H] (f : F) (r : k) :
map_domain f (algebra_map k (monoid_algebra A G) r) =
algebra_map k (monoid_algebra A H) r :=
by simp only [coe_algebra_map, map_domain_single, map_one]
/-- If `f : G β†’ H` is a multiplicative homomorphism between two monoids, then
`finsupp.map_domain f` is an algebra homomorphism between their monoid algebras. -/
@[simps]
def map_domain_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A] {H F : Type*}
[monoid H] [monoid_hom_class F G H] (f : F) :
monoid_algebra A G →ₐ[k] monoid_algebra A H :=
{ commutes' := map_domain_algebra_map k A f,
..map_domain_ring_hom A f}
end lift
section
local attribute [reducible] monoid_algebra
variables (k)
/-- When `V` is a `k[G]`-module, multiplication by a group element `g` is a `k`-linear map. -/
def group_smul.linear_map [monoid G] [comm_semiring k]
(V : Type u₃) [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V]
[is_scalar_tower k (monoid_algebra k G) V] (g : G) :
V β†’β‚—[k] V :=
{ to_fun := Ξ» v, (single g (1 : k) β€’ v : V),
map_add' := Ξ» x y, smul_add (single g (1 : k)) x y,
map_smul' := Ξ» c x, smul_algebra_smul_comm _ _ _ }
@[simp]
lemma group_smul.linear_map_apply [monoid G] [comm_semiring k]
(V : Type u₃) [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V]
[is_scalar_tower k (monoid_algebra k G) V] (g : G) (v : V) :
(group_smul.linear_map k V g) v = (single g (1 : k) β€’ v : V) :=
rfl
section
variables {k}
variables [monoid G] [comm_semiring k] {V W : Type u₃}
[add_comm_monoid V] [module k V] [module (monoid_algebra k G) V]
[is_scalar_tower k (monoid_algebra k G) V]
[add_comm_monoid W] [module k W] [module (monoid_algebra k G) W]
[is_scalar_tower k (monoid_algebra k G) W]
(f : V β†’β‚—[k] W)
(h : βˆ€ (g : G) (v : V), f (single g (1 : k) β€’ v : V) = (single g (1 : k) β€’ (f v) : W))
include h
/-- Build a `k[G]`-linear map from a `k`-linear map and evidence that it is `G`-equivariant. -/
def equivariant_of_linear_of_comm : V β†’β‚—[monoid_algebra k G] W :=
{ to_fun := f,
map_add' := Ξ» v v', by simp,
map_smul' := Ξ» c v,
begin
apply finsupp.induction c,
{ simp, },
{ intros g r c' nm nz w,
dsimp at *,
simp only [add_smul, f.map_add, w, add_left_inj, single_eq_algebra_map_mul_of, ← smul_smul],
erw [algebra_map_smul (monoid_algebra k G) r, algebra_map_smul (monoid_algebra k G) r,
f.map_smul, h g v, of_apply],
all_goals { apply_instance } }
end, }
@[simp]
lemma equivariant_of_linear_of_comm_apply (v : V) : (equivariant_of_linear_of_comm f h) v = f v :=
rfl
end
end
section
universe ui
variable {ΞΉ : Type ui}
local attribute [reducible] monoid_algebra
lemma prod_single [comm_semiring k] [comm_monoid G]
{s : finset ΞΉ} {a : ΞΉ β†’ G} {b : ΞΉ β†’ k} :
(∏ i in s, single (a i) (b i)) = single (∏ i in s, a i) (∏ i in s, b i) :=
finset.cons_induction_on s rfl $ Ξ» a s has ih, by rw [prod_cons has, ih,
single_mul_single, prod_cons has, prod_cons has]
end
section -- We now prove some additional statements that hold for group algebras.
variables [semiring k] [group G]
local attribute [reducible] monoid_algebra
@[simp]
lemma mul_single_apply (f : monoid_algebra k G) (r : k) (x y : G) :
(f * single x r) y = f (y * x⁻¹) * r :=
f.mul_single_apply_aux $ Ξ» a, eq_mul_inv_iff_mul_eq.symm
@[simp]
lemma single_mul_apply (r : k) (x : G) (f : monoid_algebra k G) (y : G) :
(single x r * f) y = r * f (x⁻¹ * y) :=
f.single_mul_apply_aux $ Ξ» z, eq_inv_mul_iff_mul_eq.symm
lemma mul_apply_left (f g : monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ λ a b, b * (g (a⁻¹ * x))) :=
calc (f * g) x = sum f (Ξ» a b, (single a b * g) x) :
by rw [← finsupp.sum_apply, ← finsupp.sum_mul, f.sum_single]
... = _ : by simp only [single_mul_apply, finsupp.sum]
-- If we'd assumed `comm_semiring`, we could deduce this from `mul_apply_left`.
lemma mul_apply_right (f g : monoid_algebra k G) (x : G) :
(f * g) x = (g.sum $ λa b, (f (x * a⁻¹)) * b) :=
calc (f * g) x = sum g (Ξ» a b, (f * single a b) x) :
by rw [← finsupp.sum_apply, ← finsupp.mul_sum, g.sum_single]
... = _ : by simp only [mul_single_apply, finsupp.sum]
end
section span
variables [semiring k] [mul_one_class G]
/-- An element of `monoid_algebra R M` is in the subalgebra generated by its support. -/
lemma mem_span_support (f : monoid_algebra k G) :
f ∈ submodule.span k (of k G '' (f.support : set G)) :=
by rw [of, monoid_hom.coe_mk, ← finsupp.supported_eq_span_single, finsupp.mem_supported]
end span
section opposite
open finsupp mul_opposite
variables [semiring k]
/-- The opposite of an `monoid_algebra R I` equivalent as a ring to
the `monoid_algebra Rᡐᡒᡖ Iᡐᡒᡖ` over the opposite ring, taking elements to their opposite. -/
@[simps {simp_rhs := tt}] protected noncomputable def op_ring_equiv [monoid G] :
(monoid_algebra k G)ᡐᡒᡖ ≃+* monoid_algebra kᡐᡒᡖ Gᡐᡒᡖ :=
{ map_mul' := begin
dsimp only [add_equiv.to_fun_eq_coe, ←add_equiv.coe_to_add_monoid_hom],
rw add_monoid_hom.map_mul_iff,
ext i₁ r₁ iβ‚‚ rβ‚‚ : 6,
simp
end,
..op_add_equiv.symm.trans $ (finsupp.map_range.add_equiv (op_add_equiv : k ≃+ kᡐᡒᡖ)).trans $
finsupp.dom_congr op_equiv }
@[simp] lemma op_ring_equiv_single [monoid G] (r : k) (x : G) :
monoid_algebra.op_ring_equiv (op (single x r)) = single (op x) (op r) :=
by simp
@[simp] lemma op_ring_equiv_symm_single [monoid G] (r : kᡐᡒᡖ) (x : Gᡐᡒᡖ) :
monoid_algebra.op_ring_equiv.symm (single x r) = op (single x.unop r.unop) :=
by simp
end opposite
section submodule
variables {k G} [comm_semiring k] [monoid G]
variables {V : Type*} [add_comm_monoid V]
variables [module k V] [module (monoid_algebra k G) V] [is_scalar_tower k (monoid_algebra k G) V]
/-- A submodule over `k` which is stable under scalar multiplication by elements of `G` is a
submodule over `monoid_algebra k G` -/
def submodule_of_smul_mem (W : submodule k V) (h : βˆ€ (g : G) (v : V), v ∈ W β†’ (of k G g) β€’ v ∈ W) :
submodule (monoid_algebra k G) V :=
{ carrier := W,
zero_mem' := W.zero_mem',
add_mem' := W.add_mem',
smul_mem' := begin
intros f v hv,
rw [←finsupp.sum_single f, finsupp.sum, finset.sum_smul],
simp_rw [←smul_of, smul_assoc],
exact submodule.sum_smul_mem W _ (Ξ» g _, h g v hv)
end }
end submodule
end monoid_algebra
/-! ### Additive monoids -/
section
variables [semiring k]
/--
The monoid algebra over a semiring `k` generated by the additive monoid `G`.
It is the type of finite formal `k`-linear combinations of terms of `G`,
endowed with the convolution product.
-/
@[derive [inhabited, add_comm_monoid]]
def add_monoid_algebra := G β†’β‚€ k
instance : has_coe_to_fun (add_monoid_algebra k G) (Ξ» _, G β†’ k) :=
finsupp.has_coe_to_fun
end
namespace add_monoid_algebra
variables {k G}
section
variables [semiring k] [non_unital_non_assoc_semiring R]
/-- A non-commutative version of `add_monoid_algebra.lift`: given a additive homomorphism `f : k β†’+
R` and a map `g : multiplicative G β†’ R`, returns the additive
homomorphism from `add_monoid_algebra k G` such that `lift_nc f g (single a b) = f b * g a`. If `f`
is a ring homomorphism and the range of either `f` or `g` is in center of `R`, then the result is a
ring homomorphism. If `R` is a `k`-algebra and `f = algebra_map k R`, then the result is an algebra
homomorphism called `add_monoid_algebra.lift`. -/
def lift_nc (f : k β†’+ R) (g : multiplicative G β†’ R) : add_monoid_algebra k G β†’+ R :=
lift_add_hom (Ξ» x : G, (add_monoid_hom.mul_right (g $ multiplicative.of_add x)).comp f)
@[simp] lemma lift_nc_single (f : k β†’+ R) (g : multiplicative G β†’ R) (a : G) (b : k) :
lift_nc f g (single a b) = f b * g (multiplicative.of_add a) :=
lift_add_hom_apply_single _ _ _
end
section has_mul
variables [semiring k] [has_add G]
/-- The product of `f g : add_monoid_algebra k G` is the finitely supported function
whose value at `a` is the sum of `f x * g y` over all pairs `x, y`
such that `x + y = a`. (Think of the product of multivariate
polynomials where `Ξ±` is the additive monoid of monomial exponents.) -/
instance : has_mul (add_monoid_algebra k G) :=
⟨λf g, f.sum $ Ξ»a₁ b₁, g.sum $ Ξ»aβ‚‚ bβ‚‚, single (a₁ + aβ‚‚) (b₁ * bβ‚‚)⟩
lemma mul_def {f g : add_monoid_algebra k G} :
f * g = (f.sum $ Ξ»a₁ b₁, g.sum $ Ξ»aβ‚‚ bβ‚‚, single (a₁ + aβ‚‚) (b₁ * bβ‚‚)) :=
rfl
instance : non_unital_non_assoc_semiring (add_monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
left_distrib := assume f g h, by simp only [mul_def, sum_add_index, mul_add, mul_zero,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add],
right_distrib := assume f g h, by simp only [mul_def, sum_add_index, add_mul, mul_zero, zero_mul,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero,
sum_add],
zero_mul := assume f, by simp only [mul_def, sum_zero_index],
mul_zero := assume f, by simp only [mul_def, sum_zero_index, sum_zero],
nsmul := Ξ» n f, n β€’ f,
nsmul_zero' := by { intros, ext, simp [-nsmul_eq_mul, add_smul] },
nsmul_succ' := by { intros, ext, simp [-nsmul_eq_mul, nat.succ_eq_one_add, add_smul] },
.. finsupp.add_comm_monoid }
variables [semiring R]
lemma lift_nc_mul {g_hom : Type*} [mul_hom_class g_hom (multiplicative G) R] (f : k β†’+* R)
(g : g_hom) (a b : add_monoid_algebra k G)
(h_comm : βˆ€ {x y}, y ∈ a.support β†’ commute (f (b x)) (g $ multiplicative.of_add y)) :
lift_nc (f : k β†’+ R) g (a * b) = lift_nc (f : k β†’+ R) g a * lift_nc (f : k β†’+ R) g b :=
(monoid_algebra.lift_nc_mul f g _ _ @h_comm : _)
end has_mul
section has_one
variables [semiring k] [has_zero G] [non_assoc_semiring R]
/-- The unit of the multiplication is `single 1 1`, i.e. the function
that is `1` at `0` and zero elsewhere. -/
instance : has_one (add_monoid_algebra k G) :=
⟨single 0 1⟩
lemma one_def : (1 : add_monoid_algebra k G) = single 0 1 :=
rfl
@[simp] lemma lift_nc_one {g_hom : Type*} [one_hom_class g_hom (multiplicative G) R]
(f : k β†’+* R) (g : g_hom) :
lift_nc (f : k β†’+ R) g 1 = 1 :=
(monoid_algebra.lift_nc_one f g : _)
end has_one
section semigroup
variables [semiring k] [add_semigroup G]
instance : non_unital_semiring (add_monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index,
sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff,
add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add],
.. add_monoid_algebra.non_unital_non_assoc_semiring }
end semigroup
section mul_one_class
variables [semiring k] [add_zero_class G]
instance : non_assoc_semiring (add_monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
nat_cast := Ξ» n, single 0 n,
nat_cast_zero := by simp [nat.cast],
nat_cast_succ := Ξ» _, by simp [nat.cast]; refl,
one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul,
single_zero, sum_zero, zero_add, one_mul, sum_single],
mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero,
single_zero, sum_zero, add_zero, mul_one, sum_single],
.. add_monoid_algebra.non_unital_non_assoc_semiring }
lemma nat_cast_def (n : β„•) : (n : add_monoid_algebra k G) = single 0 n := rfl
end mul_one_class
/-! #### Semiring structure -/
section semiring
instance {R : Type*} [monoid R] [semiring k] [distrib_mul_action R k] :
has_smul R (add_monoid_algebra k G) :=
finsupp.has_smul
variables [semiring k] [add_monoid G]
instance : semiring (add_monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
.. add_monoid_algebra.non_unital_semiring,
.. add_monoid_algebra.non_assoc_semiring, }
variables [semiring R]
/-- `lift_nc` as a `ring_hom`, for when `f` and `g` commute -/
def lift_nc_ring_hom (f : k β†’+* R) (g : multiplicative G β†’* R)
(h_comm : βˆ€ x y, commute (f x) (g y)) :
add_monoid_algebra k G β†’+* R :=
{ to_fun := lift_nc (f : k β†’+ R) g,
map_one' := lift_nc_one _ _,
map_mul' := Ξ» a b, lift_nc_mul _ _ _ _ $ Ξ» _ _ _, h_comm _ _,
..(lift_nc (f : k β†’+ R) g)}
end semiring
instance [comm_semiring k] [add_comm_semigroup G] :
non_unital_comm_semiring (add_monoid_algebra k G) :=
{ mul_comm := @mul_comm (monoid_algebra k $ multiplicative G) _,
.. add_monoid_algebra.non_unital_semiring }
instance [semiring k] [nontrivial k] [nonempty G] : nontrivial (add_monoid_algebra k G) :=
finsupp.nontrivial
/-! #### Derived instances -/
section derived_instances
instance [comm_semiring k] [add_comm_monoid G] : comm_semiring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.non_unital_comm_semiring,
.. add_monoid_algebra.semiring }
instance [semiring k] [subsingleton k] : unique (add_monoid_algebra k G) :=
finsupp.unique_of_right
instance [ring k] : add_comm_group (add_monoid_algebra k G) :=
finsupp.add_comm_group
instance [ring k] [has_add G] : non_unital_non_assoc_ring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.add_comm_group,
.. add_monoid_algebra.non_unital_non_assoc_semiring }
instance [ring k] [add_semigroup G] : non_unital_ring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.add_comm_group,
.. add_monoid_algebra.non_unital_semiring }
instance [ring k] [add_zero_class G] : non_assoc_ring (add_monoid_algebra k G) :=
{ int_cast := Ξ» z, single 0 (z : k),
int_cast_of_nat := Ξ» n, by simpa,
int_cast_neg_succ_of_nat := Ξ» n, by simpa,
.. add_monoid_algebra.add_comm_group,
.. add_monoid_algebra.non_assoc_semiring }
lemma int_cast_def [ring k] [add_zero_class G] (z : β„€) :
(z : add_monoid_algebra k G) = single 0 z := rfl
instance [ring k] [add_monoid G] : ring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.non_assoc_ring,
.. add_monoid_algebra.semiring }
instance [comm_ring k] [add_comm_semigroup G] : non_unital_comm_ring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.non_unital_comm_semiring,
.. add_monoid_algebra.non_unital_ring }
instance [comm_ring k] [add_comm_monoid G] : comm_ring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.non_unital_comm_ring,
.. add_monoid_algebra.ring }
variables {S : Type*}
instance [monoid R] [semiring k] [distrib_mul_action R k] :
distrib_mul_action R (add_monoid_algebra k G) :=
finsupp.distrib_mul_action G k
instance [monoid R] [semiring k] [distrib_mul_action R k] [has_faithful_smul R k] [nonempty G] :
has_faithful_smul R (add_monoid_algebra k G) :=
finsupp.has_faithful_smul
instance [semiring R] [semiring k] [module R k] : module R (add_monoid_algebra k G) :=
finsupp.module G k
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[has_smul R S] [is_scalar_tower R S k] :
is_scalar_tower R S (add_monoid_algebra k G) :=
finsupp.is_scalar_tower G k
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[smul_comm_class R S k] :
smul_comm_class R S (add_monoid_algebra k G) :=
finsupp.smul_comm_class G k
instance [monoid R] [semiring k] [distrib_mul_action R k] [distrib_mul_action Rᡐᡒᡖ k]
[is_central_scalar R k] :
is_central_scalar R (add_monoid_algebra k G) :=
finsupp.is_central_scalar G k
/-! It is hard to state the equivalent of `distrib_mul_action G (add_monoid_algebra k G)`
because we've never discussed actions of additive groups. -/
end derived_instances
section misc_theorems
variables [semiring k]
lemma mul_apply [decidable_eq G] [has_add G] (f g : add_monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ Ξ»a₁ b₁, g.sum $ Ξ»aβ‚‚ bβ‚‚, if a₁ + aβ‚‚ = x then b₁ * bβ‚‚ else 0) :=
@monoid_algebra.mul_apply k (multiplicative G) _ _ _ _ _ _
lemma mul_apply_antidiagonal [has_add G] (f g : add_monoid_algebra k G) (x : G) (s : finset (G Γ— G))
(hs : βˆ€ {p : G Γ— G}, p ∈ s ↔ p.1 + p.2 = x) :
(f * g) x = βˆ‘ p in s, (f p.1 * g p.2) :=
@monoid_algebra.mul_apply_antidiagonal k (multiplicative G) _ _ _ _ _ s @hs
lemma support_mul [decidable_eq G] [has_add G] (a b : add_monoid_algebra k G) :
(a * b).support βŠ† a.support.bUnion (Ξ»a₁, b.support.bUnion $ Ξ»aβ‚‚, {a₁ + aβ‚‚}) :=
@monoid_algebra.support_mul k (multiplicative G) _ _ _ _ _
lemma single_mul_single [has_add G] {a₁ aβ‚‚ : G} {b₁ bβ‚‚ : k} :
(single a₁ b₁ * single aβ‚‚ bβ‚‚ : add_monoid_algebra k G) = single (a₁ + aβ‚‚) (b₁ * bβ‚‚) :=
@monoid_algebra.single_mul_single k (multiplicative G) _ _ _ _ _ _
-- This should be a `@[simp]` lemma, but the simp_nf linter times out if we add this.
-- Probably the correct fix is to make a `[add_]monoid_algebra.single` with the correct type,
-- instead of relying on `finsupp.single`.
lemma single_pow [add_monoid G] {a : G} {b : k} :
βˆ€ n : β„•, ((single a b)^n : add_monoid_algebra k G) = single (n β€’ a) (b ^ n)
| 0 := by { simp only [pow_zero, zero_nsmul], refl }
| (n+1) :=
by rw [pow_succ, pow_succ, single_pow n, single_mul_single, add_comm, add_nsmul, one_nsmul]
/-- Like `finsupp.map_domain_zero`, but for the `1` we define in this file -/
@[simp] lemma map_domain_one {Ξ± : Type*} {Ξ² : Type*} {Ξ±β‚‚ : Type*}
[semiring Ξ²] [has_zero Ξ±] [has_zero Ξ±β‚‚] {F : Type*} [zero_hom_class F Ξ± Ξ±β‚‚] (f : F) :
(map_domain f (1 : add_monoid_algebra Ξ² Ξ±) : add_monoid_algebra Ξ² Ξ±β‚‚) =
(1 : add_monoid_algebra Ξ² Ξ±β‚‚) :=
by simp_rw [one_def, map_domain_single, map_zero]
/-- Like `finsupp.map_domain_add`, but for the convolutive multiplication we define in this file -/
lemma map_domain_mul {Ξ± : Type*} {Ξ² : Type*} {Ξ±β‚‚ : Type*} [semiring Ξ²] [has_add Ξ±] [has_add Ξ±β‚‚]
{F : Type*} [add_hom_class F Ξ± Ξ±β‚‚] (f : F) (x y : add_monoid_algebra Ξ² Ξ±) :
(map_domain f (x * y : add_monoid_algebra Ξ² Ξ±) : add_monoid_algebra Ξ² Ξ±β‚‚) =
(map_domain f x * map_domain f y : add_monoid_algebra Ξ² Ξ±β‚‚) :=
begin
simp_rw [mul_def, map_domain_sum, map_domain_single, map_add],
rw finsupp.sum_map_domain_index,
{ congr,
ext a b,
rw finsupp.sum_map_domain_index,
{ simp },
{ simp [mul_add] } },
{ simp },
{ simp [add_mul] }
end
section
variables (k G)
/-- The embedding of an additive magma into its additive magma algebra. -/
@[simps] def of_magma [has_add G] : multiplicative G β†’β‚™* add_monoid_algebra k G :=
{ to_fun := Ξ» a, single a 1,
map_mul' := Ξ» a b, by simpa only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero], }
/-- Embedding of a magma with zero into its magma algebra. -/
def of [add_zero_class G] : multiplicative G β†’* add_monoid_algebra k G :=
{ to_fun := Ξ» a, single a 1,
map_one' := rfl,
.. of_magma k G }
/-- Embedding of a magma with zero `G`, into its magma algebra, having `G` as source. -/
def of' : G β†’ add_monoid_algebra k G := Ξ» a, single a 1
end
@[simp] lemma of_apply [add_zero_class G] (a : multiplicative G) : of k G a = single a.to_add 1 :=
rfl
@[simp] lemma of'_apply (a : G) : of' k G a = single a 1 := rfl
lemma of'_eq_of [add_zero_class G] (a : G) : of' k G a = of k G a := rfl
lemma of_injective [nontrivial k] [add_zero_class G] : function.injective (of k G) :=
Ξ» a b h, by simpa using (single_eq_single_iff _ _ _ _).mp h
/--
`finsupp.single` as a `monoid_hom` from the product type into the additive monoid algebra.
Note the order of the elements of the product are reversed compared to the arguments of
`finsupp.single`.
-/
@[simps] def single_hom [add_zero_class G] : k Γ— multiplicative G β†’* add_monoid_algebra k G :=
{ to_fun := Ξ» a, single a.2.to_add a.1,
map_one' := rfl,
map_mul' := Ξ» a b, single_mul_single.symm }
lemma mul_single_apply_aux [has_add G] (f : add_monoid_algebra k G) (r : k)
(x y z : G) (H : βˆ€ a, a + x = z ↔ a = y) :
(f * single x r) z = f y * r :=
@monoid_algebra.mul_single_apply_aux k (multiplicative G) _ _ _ _ _ _ _ H
lemma mul_single_zero_apply [add_zero_class G] (f : add_monoid_algebra k G) (r : k) (x : G) :
(f * single 0 r) x = f x * r :=
f.mul_single_apply_aux r _ _ _ $ Ξ» a, by rw [add_zero]
lemma single_mul_apply_aux [has_add G] (f : add_monoid_algebra k G) (r : k) (x y z : G)
(H : βˆ€ a, x + a = y ↔ a = z) :
(single x r * f : add_monoid_algebra k G) y = r * f z :=
@monoid_algebra.single_mul_apply_aux k (multiplicative G) _ _ _ _ _ _ _ H
lemma single_zero_mul_apply [add_zero_class G] (f : add_monoid_algebra k G) (r : k) (x : G) :
(single 0 r * f : add_monoid_algebra k G) x = r * f x :=
f.single_mul_apply_aux r _ _ _ $ Ξ» a, by rw [zero_add]
lemma mul_single_apply [add_group G] (f : add_monoid_algebra k G) (r : k) (x y : G) :
(f * single x r) y = f (y - x) * r :=
(sub_eq_add_neg y x).symm β–Έ
@monoid_algebra.mul_single_apply k (multiplicative G) _ _ _ _ _ _
lemma single_mul_apply [add_group G] (r : k) (x : G) (f : add_monoid_algebra k G) (y : G) :
(single x r * f : add_monoid_algebra k G) y = r * f (- x + y) :=
@monoid_algebra.single_mul_apply k (multiplicative G) _ _ _ _ _ _
lemma support_mul_single [add_right_cancel_semigroup G]
(f : add_monoid_algebra k G) (r : k) (hr : βˆ€ y, y * r = 0 ↔ y = 0) (x : G) :
(f * single x r : add_monoid_algebra k G).support = f.support.map (add_right_embedding x) :=
@monoid_algebra.support_mul_single k (multiplicative G) _ _ _ _ hr _
lemma support_single_mul [add_left_cancel_semigroup G]
(f : add_monoid_algebra k G) (r : k) (hr : βˆ€ y, r * y = 0 ↔ y = 0) (x : G) :
(single x r * f : add_monoid_algebra k G).support = f.support.map (add_left_embedding x) :=
@monoid_algebra.support_single_mul k (multiplicative G) _ _ _ _ hr _
lemma lift_nc_smul {R : Type*} [add_zero_class G] [semiring R] (f : k β†’+* R)
(g : multiplicative G β†’* R) (c : k) (Ο† : monoid_algebra k G) :
lift_nc (f : k β†’+ R) g (c β€’ Ο†) = f c * lift_nc (f : k β†’+ R) g Ο† :=
@monoid_algebra.lift_nc_smul k (multiplicative G) _ _ _ _ f g c Ο†
lemma induction_on [add_monoid G] {p : add_monoid_algebra k G β†’ Prop} (f : add_monoid_algebra k G)
(hM : βˆ€ g, p (of k G (multiplicative.of_add g)))
(hadd : βˆ€ f g : add_monoid_algebra k G, p f β†’ p g β†’ p (f + g))
(hsmul : βˆ€ (r : k) f, p f β†’ p (r β€’ f)) : p f :=
begin
refine finsupp.induction_linear f _ (Ξ» f g hf hg, hadd f g hf hg) (Ξ» g r, _),
{ simpa using hsmul 0 (of k G (multiplicative.of_add 0)) (hM 0) },
{ convert hsmul r (of k G (multiplicative.of_add g)) (hM g),
simp only [mul_one, to_add_of_add, smul_single', of_apply] },
end
/-- If `f : G β†’ H` is an additive homomorphism between two additive monoids, then
`finsupp.map_domain f` is a ring homomorphism between their add monoid algebras. -/
@[simps]
def map_domain_ring_hom (k : Type*) [semiring k] {H F : Type*} [add_monoid G] [add_monoid H]
[add_monoid_hom_class F G H] (f : F) :
add_monoid_algebra k G β†’+* add_monoid_algebra k H :=
{ map_one' := map_domain_one f,
map_mul' := Ξ» x y, map_domain_mul f x y,
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra k G β†’+ monoid_algebra k H) }
end misc_theorems
section span
variables [semiring k]
/-- An element of `add_monoid_algebra R M` is in the submodule generated by its support. -/
lemma mem_span_support [add_zero_class G] (f : add_monoid_algebra k G) :
f ∈ submodule.span k (of k G '' (f.support : set G)) :=
by rw [of, monoid_hom.coe_mk, ← finsupp.supported_eq_span_single, finsupp.mem_supported]
/-- An element of `add_monoid_algebra R M` is in the subalgebra generated by its support, using
unbundled inclusion. -/
lemma mem_span_support' (f : add_monoid_algebra k G) :
f ∈ submodule.span k (of' k G '' (f.support : set G)) :=
by rw [of', ← finsupp.supported_eq_span_single, finsupp.mem_supported]
end span
end add_monoid_algebra
/-!
#### Conversions between `add_monoid_algebra` and `monoid_algebra`
We have not defined `add_monoid_algebra k G = monoid_algebra k (multiplicative G)`
because historically this caused problems;
since the changes that have made `nsmul` definitional, this would be possible,
but for now we just contruct the ring isomorphisms using `ring_equiv.refl _`.
-/
/-- The equivalence between `add_monoid_algebra` and `monoid_algebra` in terms of
`multiplicative` -/
protected def add_monoid_algebra.to_multiplicative [semiring k] [has_add G] :
add_monoid_algebra k G ≃+* monoid_algebra k (multiplicative G) :=
{ to_fun := equiv_map_domain multiplicative.of_add,
map_mul' := Ξ» x y, begin
repeat {rw equiv_map_domain_eq_map_domain},
dsimp [multiplicative.of_add],
convert monoid_algebra.map_domain_mul (mul_hom.id (multiplicative G)) _ _,
end,
..finsupp.dom_congr multiplicative.of_add }
/-- The equivalence between `monoid_algebra` and `add_monoid_algebra` in terms of `additive` -/
protected def monoid_algebra.to_additive [semiring k] [has_mul G] :
monoid_algebra k G ≃+* add_monoid_algebra k (additive G) :=
{ to_fun := equiv_map_domain additive.of_mul,
map_mul' := Ξ» x y, begin
repeat {rw equiv_map_domain_eq_map_domain},
dsimp [additive.of_mul],
convert monoid_algebra.map_domain_mul (mul_hom.id G) _ _,
end,
..finsupp.dom_congr additive.of_mul }
namespace add_monoid_algebra
variables {k G}
/-! #### Non-unital, non-associative algebra structure -/
section non_unital_non_assoc_algebra
variables (k) [monoid R] [semiring k] [distrib_mul_action R k] [has_add G]
instance is_scalar_tower_self [is_scalar_tower R k k] :
is_scalar_tower R (add_monoid_algebra k G) (add_monoid_algebra k G) :=
@monoid_algebra.is_scalar_tower_self k (multiplicative G) R _ _ _ _ _
/-- Note that if `k` is a `comm_semiring` then we have `smul_comm_class k k k` and so we can take
`R = k` in the below. In other words, if the coefficients are commutative amongst themselves, they
also commute with the algebra multiplication. -/
instance smul_comm_class_self [smul_comm_class R k k] :
smul_comm_class R (add_monoid_algebra k G) (add_monoid_algebra k G) :=
@monoid_algebra.smul_comm_class_self k (multiplicative G) R _ _ _ _ _
instance smul_comm_class_symm_self [smul_comm_class k R k] :
smul_comm_class (add_monoid_algebra k G) R (add_monoid_algebra k G) :=
@monoid_algebra.smul_comm_class_symm_self k (multiplicative G) R _ _ _ _ _
variables {A : Type u₃} [non_unital_non_assoc_semiring A]
/-- A non_unital `k`-algebra homomorphism from `add_monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma non_unital_alg_hom_ext [distrib_mul_action k A]
{φ₁ Ο†β‚‚ : add_monoid_algebra k G →ₙₐ[k] A}
(h : βˆ€ x, φ₁ (single x 1) = Ο†β‚‚ (single x 1)) : φ₁ = Ο†β‚‚ :=
@monoid_algebra.non_unital_alg_hom_ext k (multiplicative G) _ _ _ _ _ φ₁ Ο†β‚‚ h
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma non_unital_alg_hom_ext' [distrib_mul_action k A]
{φ₁ Ο†β‚‚ : add_monoid_algebra k G →ₙₐ[k] A}
(h : φ₁.to_mul_hom.comp (of_magma k G) = Ο†β‚‚.to_mul_hom.comp (of_magma k G)) : φ₁ = Ο†β‚‚ :=
@monoid_algebra.non_unital_alg_hom_ext' k (multiplicative G) _ _ _ _ _ φ₁ Ο†β‚‚ h
/-- The functor `G ↦ add_monoid_algebra k G`, from the category of magmas to the category of
non-unital, non-associative algebras over `k` is adjoint to the forgetful functor in the other
direction. -/
@[simps] def lift_magma [module k A] [is_scalar_tower k A A] [smul_comm_class k A A] :
(multiplicative G β†’β‚™* A) ≃ (add_monoid_algebra k G →ₙₐ[k] A) :=
{ to_fun := Ξ» f, { to_fun := Ξ» a, sum a (Ξ» m t, t β€’ f (multiplicative.of_add m)),
.. (monoid_algebra.lift_magma k f : _)},
inv_fun := Ξ» F, F.to_mul_hom.comp (of_magma k G),
.. (monoid_algebra.lift_magma k : (multiplicative G β†’β‚™* A) ≃ (_ →ₙₐ[k] A)) }
end non_unital_non_assoc_algebra
/-! #### Algebra structure -/
section algebra
local attribute [reducible] add_monoid_algebra
/-- `finsupp.single 0` as a `ring_hom` -/
@[simps] def single_zero_ring_hom [semiring k] [add_monoid G] : k β†’+* add_monoid_algebra k G :=
{ map_one' := rfl,
map_mul' := Ξ» x y, by rw [single_add_hom, single_mul_single, zero_add],
..finsupp.single_add_hom 0}
/-- If two ring homomorphisms from `add_monoid_algebra k G` are equal on all `single a 1`
and `single 0 b`, then they are equal. -/
lemma ring_hom_ext {R} [semiring k] [add_monoid G] [semiring R]
{f g : add_monoid_algebra k G β†’+* R} (hβ‚€ : βˆ€ b, f (single 0 b) = g (single 0 b))
(h_of : βˆ€ a, f (single a 1) = g (single a 1)) : f = g :=
@monoid_algebra.ring_hom_ext k (multiplicative G) R _ _ _ _ _ hβ‚€ h_of
/-- If two ring homomorphisms from `add_monoid_algebra k G` are equal on all `single a 1`
and `single 0 b`, then they are equal.
See note [partially-applied ext lemmas]. -/
@[ext] lemma ring_hom_ext' {R} [semiring k] [add_monoid G] [semiring R]
{f g : add_monoid_algebra k G β†’+* R}
(h₁ : f.comp single_zero_ring_hom = g.comp single_zero_ring_hom)
(h_of : (f : add_monoid_algebra k G β†’* R).comp (of k G) =
(g : add_monoid_algebra k G β†’* R).comp (of k G)) :
f = g :=
ring_hom_ext (ring_hom.congr_fun h₁) (monoid_hom.congr_fun h_of)
section opposite
open finsupp mul_opposite
variables [semiring k]
/-- The opposite of an `add_monoid_algebra R I` is ring equivalent to
the `add_monoid_algebra Rᡐᡒᡖ I` over the opposite ring, taking elements to their opposite. -/
@[simps {simp_rhs := tt}] protected noncomputable def op_ring_equiv [add_comm_monoid G] :
(add_monoid_algebra k G)ᡐᡒᡖ ≃+* add_monoid_algebra kᡐᡒᡖ G :=
{ map_mul' := begin
dsimp only [add_equiv.to_fun_eq_coe, ←add_equiv.coe_to_add_monoid_hom],
rw add_monoid_hom.map_mul_iff,
ext i r i' r' : 6,
dsimp,
simp only [map_range_single, single_mul_single, ←op_mul, add_comm]
end,
..mul_opposite.op_add_equiv.symm.trans
(finsupp.map_range.add_equiv (mul_opposite.op_add_equiv : k ≃+ kᡐᡒᡖ))}
@[simp] lemma op_ring_equiv_single [add_comm_monoid G] (r : k) (x : G) :
add_monoid_algebra.op_ring_equiv (op (single x r)) = single x (op r) :=
by simp
@[simp] lemma op_ring_equiv_symm_single [add_comm_monoid G] (r : kᡐᡒᡖ) (x : Gᡐᡒᡖ) :
add_monoid_algebra.op_ring_equiv.symm (single x r) = op (single x r.unop) :=
by simp
end opposite
/--
The instance `algebra R (add_monoid_algebra k G)` whenever we have `algebra R k`.
In particular this provides the instance `algebra k (add_monoid_algebra k G)`.
-/
instance [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] :
algebra R (add_monoid_algebra k G) :=
{ smul_def' := Ξ» r a, by { ext, simp [single_zero_mul_apply, algebra.smul_def, pi.smul_apply], },
commutes' := Ξ» r f, by { ext, simp [single_zero_mul_apply, mul_single_zero_apply,
algebra.commutes], },
..single_zero_ring_hom.comp (algebra_map R k) }
/-- `finsupp.single 0` as a `alg_hom` -/
@[simps] def single_zero_alg_hom [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] :
k →ₐ[R] add_monoid_algebra k G :=
{ commutes' := Ξ» r, by { ext, simp, refl, }, ..single_zero_ring_hom}
@[simp] lemma coe_algebra_map [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] :
(algebra_map R (add_monoid_algebra k G) : R β†’ add_monoid_algebra k G) =
single 0 ∘ (algebra_map R k) :=
rfl
end algebra
section lift
variables {k G} [comm_semiring k] [add_monoid G]
variables {A : Type u₃} [semiring A] [algebra k A] {B : Type*} [semiring B] [algebra k B]
/-- `lift_nc_ring_hom` as a `alg_hom`, for when `f` is an `alg_hom` -/
def lift_nc_alg_hom (f : A →ₐ[k] B) (g : multiplicative G β†’* B)
(h_comm : βˆ€ x y, commute (f x) (g y)) :
add_monoid_algebra A G →ₐ[k] B :=
{ to_fun := lift_nc_ring_hom (f : A β†’+* B) g h_comm,
commutes' := by simp [lift_nc_ring_hom],
..(lift_nc_ring_hom (f : A β†’+* B) g h_comm)}
/-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma alg_hom_ext ⦃φ₁ Ο†β‚‚ : add_monoid_algebra k G →ₐ[k] A⦄
(h : βˆ€ x, φ₁ (single x 1) = Ο†β‚‚ (single x 1)) : φ₁ = Ο†β‚‚ :=
@monoid_algebra.alg_hom_ext k (multiplicative G) _ _ _ _ _ _ _ h
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma alg_hom_ext' ⦃φ₁ Ο†β‚‚ : add_monoid_algebra k G →ₐ[k] A⦄
(h : (φ₁ : add_monoid_algebra k G β†’* A).comp (of k G) =
(Ο†β‚‚ : add_monoid_algebra k G β†’* A).comp (of k G)) : φ₁ = Ο†β‚‚ :=
alg_hom_ext $ monoid_hom.congr_fun h
variables (k G A)
/-- Any monoid homomorphism `G β†’* A` can be lifted to an algebra homomorphism
`monoid_algebra k G →ₐ[k] A`. -/
def lift : (multiplicative G β†’* A) ≃ (add_monoid_algebra k G →ₐ[k] A) :=
{ inv_fun := Ξ» f, (f : add_monoid_algebra k G β†’* A).comp (of k G),
to_fun := Ξ» F,
{ to_fun := lift_nc_alg_hom (algebra.of_id k A) F $ Ξ» _ _, algebra.commutes _ _,
.. @monoid_algebra.lift k (multiplicative G) _ _ A _ _ F},
.. @monoid_algebra.lift k (multiplicative G) _ _ A _ _ }
variables {k G A}
lemma lift_apply' (F : multiplicative G β†’* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (Ξ» a b, (algebra_map k A b) * F (multiplicative.of_add a)) := rfl
lemma lift_apply (F : multiplicative G β†’* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (Ξ» a b, b β€’ F (multiplicative.of_add a)) :=
by simp only [lift_apply', algebra.smul_def]
lemma lift_def (F : multiplicative G β†’* A) :
⇑(lift k G A F) = lift_nc ((algebra_map k A : k β†’+* A) : k β†’+ A) F :=
rfl
@[simp] lemma lift_symm_apply (F : add_monoid_algebra k G →ₐ[k] A) (x : multiplicative G) :
(lift k G A).symm F x = F (single x.to_add 1) := rfl
lemma lift_of (F : multiplicative G β†’* A) (x : multiplicative G) :
lift k G A F (of k G x) = F x :=
by rw [of_apply, ← lift_symm_apply, equiv.symm_apply_apply]
@[simp] lemma lift_single (F : multiplicative G β†’* A) (a b) :
lift k G A F (single a b) = b β€’ F (multiplicative.of_add a) :=
by rw [lift_def, lift_nc_single, algebra.smul_def, ring_hom.coe_add_monoid_hom]
lemma lift_unique' (F : add_monoid_algebra k G →ₐ[k] A) :
F = lift k G A ((F : add_monoid_algebra k G β†’* A).comp (of k G)) :=
((lift k G A).apply_symm_apply F).symm
/-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by
its values on `F (single a 1)`. -/
lemma lift_unique (F : add_monoid_algebra k G →ₐ[k] A) (f : monoid_algebra k G) :
F f = f.sum (Ξ» a b, b β€’ F (single a 1)) :=
by conv_lhs { rw lift_unique' F, simp [lift_apply] }
lemma alg_hom_ext_iff {φ₁ Ο†β‚‚ : add_monoid_algebra k G →ₐ[k] A} :
(βˆ€ x, φ₁ (finsupp.single x 1) = Ο†β‚‚ (finsupp.single x 1)) ↔ φ₁ = Ο†β‚‚ :=
⟨λ h, alg_hom_ext h, by rintro rfl _; refl⟩
end lift
section
local attribute [reducible] add_monoid_algebra
universe ui
variable {ΞΉ : Type ui}
lemma prod_single [comm_semiring k] [add_comm_monoid G]
{s : finset ΞΉ} {a : ΞΉ β†’ G} {b : ΞΉ β†’ k} :
(∏ i in s, single (a i) (b i)) = single (βˆ‘ i in s, a i) (∏ i in s, b i) :=
finset.cons_induction_on s rfl $ Ξ» a s has ih, by rw [prod_cons has, ih,
single_mul_single, sum_cons has, prod_cons has]
end
lemma map_domain_algebra_map {A H F : Type*} [comm_semiring k] [semiring A]
[algebra k A] [add_monoid G] [add_monoid H] [add_monoid_hom_class F G H] (f : F) (r : k) :
map_domain f (algebra_map k (add_monoid_algebra A G) r) =
algebra_map k (add_monoid_algebra A H) r :=
by simp only [function.comp_app, map_domain_single, add_monoid_algebra.coe_algebra_map, map_zero]
/-- If `f : G β†’ H` is a homomorphism between two additive magmas, then `finsupp.map_domain f` is a
non-unital algebra homomorphism between their additive magma algebras. -/
@[simps]
def map_domain_non_unital_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A]
{G H F : Type*} [has_add G] [has_add H] [add_hom_class F G H] (f : F) :
add_monoid_algebra A G →ₙₐ[k] add_monoid_algebra A H :=
{ map_mul' := Ξ» x y, map_domain_mul f x y,
map_smul' := Ξ» r x, map_domain_smul r x,
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra A G β†’+ monoid_algebra A H) }
/-- If `f : G β†’ H` is an additive homomorphism between two additive monoids, then
`finsupp.map_domain f` is an algebra homomorphism between their add monoid algebras. -/
@[simps] def map_domain_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A]
[add_monoid G] {H F : Type*} [add_monoid H] [add_monoid_hom_class F G H] (f : F) :
add_monoid_algebra A G →ₐ[k] add_monoid_algebra A H :=
{ commutes' := map_domain_algebra_map f,
..map_domain_ring_hom A f}
end add_monoid_algebra
variables [comm_semiring R] (k G)
/-- The algebra equivalence between `add_monoid_algebra` and `monoid_algebra` in terms of
`multiplicative`. -/
def add_monoid_algebra.to_multiplicative_alg_equiv [semiring k] [algebra R k] [add_monoid G] :
add_monoid_algebra k G ≃ₐ[R] monoid_algebra k (multiplicative G) :=
{ commutes' := Ξ» r, by simp [add_monoid_algebra.to_multiplicative],
..add_monoid_algebra.to_multiplicative k G }
/-- The algebra equivalence between `monoid_algebra` and `add_monoid_algebra` in terms of
`additive`. -/
def monoid_algebra.to_additive_alg_equiv [semiring k] [algebra R k] [monoid G] :
monoid_algebra k G ≃ₐ[R] add_monoid_algebra k (additive G) :=
{ commutes' := Ξ» r, by simp [monoid_algebra.to_additive],
..monoid_algebra.to_additive k G }