Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2017 Johannes HΓΆlzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes HΓΆlzl, Yury G. Kudryashov, Scott Morrison | |
-/ | |
import algebra.big_operators.finsupp | |
import algebra.hom.non_unital_alg | |
import linear_algebra.finsupp | |
/-! | |
# Monoid algebras | |
When the domain of a `finsupp` has a multiplicative or additive structure, we can define | |
a convolution product. To mathematicians this structure is known as the "monoid algebra", | |
i.e. the finite formal linear combinations over a given semiring of elements of the monoid. | |
The "group ring" β€[G] or the "group algebra" k[G] are typical uses. | |
In fact the construction of the "monoid algebra" makes sense when `G` is not even a monoid, but | |
merely a magma, i.e., when `G` carries a multiplication which is not required to satisfy any | |
conditions at all. In this case the construction yields a not-necessarily-unital, | |
not-necessarily-associative algebra but it is still adjoint to the forgetful functor from such | |
algebras to magmas, and we prove this as `monoid_algebra.lift_magma`. | |
In this file we define `monoid_algebra k G := G ββ k`, and `add_monoid_algebra k G` | |
in the same way, and then define the convolution product on these. | |
When the domain is additive, this is used to define polynomials: | |
``` | |
polynomial Ξ± := add_monoid_algebra β Ξ± | |
mv_polynomial Ο Ξ± := add_monoid_algebra (Ο ββ β) Ξ± | |
``` | |
When the domain is multiplicative, e.g. a group, this will be used to define the group ring. | |
## Implementation note | |
Unfortunately because additive and multiplicative structures both appear in both cases, | |
it doesn't appear to be possible to make much use of `to_additive`, and we just settle for | |
saying everything twice. | |
Similarly, I attempted to just define | |
`add_monoid_algebra k G := monoid_algebra k (multiplicative G)`, but the definitional equality | |
`multiplicative G = G` leaks through everywhere, and seems impossible to use. | |
-/ | |
noncomputable theory | |
open_locale big_operators | |
open finset finsupp | |
universes uβ uβ uβ | |
variables (k : Type uβ) (G : Type uβ) {R : Type*} | |
/-! ### Multiplicative monoids -/ | |
section | |
variables [semiring k] | |
/-- | |
The monoid algebra over a semiring `k` generated by the monoid `G`. | |
It is the type of finite formal `k`-linear combinations of terms of `G`, | |
endowed with the convolution product. | |
-/ | |
@[derive [inhabited, add_comm_monoid]] | |
def monoid_algebra : Type (max uβ uβ) := G ββ k | |
instance : has_coe_to_fun (monoid_algebra k G) (Ξ» _, G β k) := | |
finsupp.has_coe_to_fun | |
end | |
namespace monoid_algebra | |
variables {k G} | |
section | |
variables [semiring k] [non_unital_non_assoc_semiring R] | |
/-- A non-commutative version of `monoid_algebra.lift`: given a additive homomorphism `f : k β+ R` | |
and a homomorphism `g : G β R`, returns the additive homomorphism from | |
`monoid_algebra k G` such that `lift_nc f g (single a b) = f b * g a`. If `f` is a ring homomorphism | |
and the range of either `f` or `g` is in center of `R`, then the result is a ring homomorphism. If | |
`R` is a `k`-algebra and `f = algebra_map k R`, then the result is an algebra homomorphism called | |
`monoid_algebra.lift`. -/ | |
def lift_nc (f : k β+ R) (g : G β R) : monoid_algebra k G β+ R := | |
lift_add_hom (Ξ» x : G, (add_monoid_hom.mul_right (g x)).comp f) | |
@[simp] lemma lift_nc_single (f : k β+ R) (g : G β R) (a : G) (b : k) : | |
lift_nc f g (single a b) = f b * g a := | |
lift_add_hom_apply_single _ _ _ | |
end | |
section has_mul | |
variables [semiring k] [has_mul G] | |
/-- The product of `f g : monoid_algebra k G` is the finitely supported function | |
whose value at `a` is the sum of `f x * g y` over all pairs `x, y` | |
such that `x * y = a`. (Think of the group ring of a group.) -/ | |
instance : has_mul (monoid_algebra k G) := | |
β¨Ξ»f g, f.sum $ Ξ»aβ bβ, g.sum $ Ξ»aβ bβ, single (aβ * aβ) (bβ * bβ)β© | |
lemma mul_def {f g : monoid_algebra k G} : | |
f * g = (f.sum $ Ξ»aβ bβ, g.sum $ Ξ»aβ bβ, single (aβ * aβ) (bβ * bβ)) := | |
rfl | |
instance : non_unital_non_assoc_semiring (monoid_algebra k G) := | |
{ zero := 0, | |
mul := (*), | |
add := (+), | |
left_distrib := assume f g h, by simp only [mul_def, sum_add_index, mul_add, mul_zero, | |
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add], | |
right_distrib := assume f g h, by simp only [mul_def, sum_add_index, add_mul, zero_mul, | |
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero, | |
sum_add], | |
zero_mul := assume f, by simp only [mul_def, sum_zero_index], | |
mul_zero := assume f, by simp only [mul_def, sum_zero_index, sum_zero], | |
.. finsupp.add_comm_monoid } | |
variables [semiring R] | |
lemma lift_nc_mul {g_hom : Type*} [mul_hom_class g_hom G R] (f : k β+* R) (g : g_hom) | |
(a b : monoid_algebra k G) (h_comm : β {x y}, y β a.support β commute (f (b x)) (g y)) : | |
lift_nc (f : k β+ R) g (a * b) = lift_nc (f : k β+ R) g a * lift_nc (f : k β+ R) g b := | |
begin | |
conv_rhs { rw [β sum_single a, β sum_single b] }, | |
simp_rw [mul_def, (lift_nc _ g).map_finsupp_sum, lift_nc_single, finsupp.sum_mul, | |
finsupp.mul_sum], | |
refine finset.sum_congr rfl (Ξ» y hy, finset.sum_congr rfl (Ξ» x hx, _)), | |
simp [mul_assoc, (h_comm hy).left_comm] | |
end | |
end has_mul | |
section semigroup | |
variables [semiring k] [semigroup G] [semiring R] | |
instance : non_unital_semiring (monoid_algebra k G) := | |
{ zero := 0, | |
mul := (*), | |
add := (+), | |
mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index, | |
sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, | |
add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add], | |
.. monoid_algebra.non_unital_non_assoc_semiring} | |
end semigroup | |
section has_one | |
variables [non_assoc_semiring R] [semiring k] [has_one G] | |
/-- The unit of the multiplication is `single 1 1`, i.e. the function | |
that is `1` at `1` and zero elsewhere. -/ | |
instance : has_one (monoid_algebra k G) := | |
β¨single 1 1β© | |
lemma one_def : (1 : monoid_algebra k G) = single 1 1 := | |
rfl | |
@[simp] lemma lift_nc_one {g_hom : Type*} [one_hom_class g_hom G R] (f : k β+* R) (g : g_hom) : | |
lift_nc (f : k β+ R) g 1 = 1 := | |
by simp [one_def] | |
end has_one | |
section mul_one_class | |
variables [semiring k] [mul_one_class G] | |
instance : non_assoc_semiring (monoid_algebra k G) := | |
{ one := 1, | |
mul := (*), | |
zero := 0, | |
add := (+), | |
nat_cast := Ξ» n, single 1 n, | |
nat_cast_zero := by simp [nat.cast], | |
nat_cast_succ := Ξ» _, by simp [nat.cast]; refl, | |
one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul, | |
single_zero, sum_zero, zero_add, one_mul, sum_single], | |
mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero, | |
single_zero, sum_zero, add_zero, mul_one, sum_single], | |
..monoid_algebra.non_unital_non_assoc_semiring } | |
lemma nat_cast_def (n : β) : (n : monoid_algebra k G) = single 1 n := rfl | |
end mul_one_class | |
/-! #### Semiring structure -/ | |
section semiring | |
variables [semiring k] [monoid G] | |
instance : semiring (monoid_algebra k G) := | |
{ one := 1, | |
mul := (*), | |
zero := 0, | |
add := (+), | |
.. monoid_algebra.non_unital_semiring, | |
.. monoid_algebra.non_assoc_semiring } | |
variables [semiring R] | |
/-- `lift_nc` as a `ring_hom`, for when `f x` and `g y` commute -/ | |
def lift_nc_ring_hom (f : k β+* R) (g : G β* R) (h_comm : β x y, commute (f x) (g y)) : | |
monoid_algebra k G β+* R := | |
{ to_fun := lift_nc (f : k β+ R) g, | |
map_one' := lift_nc_one _ _, | |
map_mul' := Ξ» a b, lift_nc_mul _ _ _ _ $ Ξ» _ _ _, h_comm _ _, | |
..(lift_nc (f : k β+ R) g)} | |
end semiring | |
instance [comm_semiring k] [comm_semigroup G] : non_unital_comm_semiring (monoid_algebra k G) := | |
{ mul_comm := assume f g, | |
begin | |
simp only [mul_def, finsupp.sum, mul_comm], | |
rw [finset.sum_comm], | |
simp only [mul_comm] | |
end, | |
.. monoid_algebra.non_unital_semiring } | |
instance [semiring k] [nontrivial k] [nonempty G]: nontrivial (monoid_algebra k G) := | |
finsupp.nontrivial | |
/-! #### Derived instances -/ | |
section derived_instances | |
instance [comm_semiring k] [comm_monoid G] : comm_semiring (monoid_algebra k G) := | |
{ .. monoid_algebra.non_unital_comm_semiring, | |
.. monoid_algebra.semiring } | |
instance [semiring k] [subsingleton k] : unique (monoid_algebra k G) := | |
finsupp.unique_of_right | |
instance [ring k] : add_comm_group (monoid_algebra k G) := | |
finsupp.add_comm_group | |
instance [ring k] [has_mul G] : non_unital_non_assoc_ring (monoid_algebra k G) := | |
{ .. monoid_algebra.add_comm_group, | |
.. monoid_algebra.non_unital_non_assoc_semiring } | |
instance [ring k] [semigroup G] : non_unital_ring (monoid_algebra k G) := | |
{ .. monoid_algebra.add_comm_group, | |
.. monoid_algebra.non_unital_semiring } | |
instance [ring k] [mul_one_class G] : non_assoc_ring (monoid_algebra k G) := | |
{ int_cast := Ξ» z, single 1 (z : k), | |
int_cast_of_nat := Ξ» n, by simpa, | |
int_cast_neg_succ_of_nat := Ξ» n, by simpa, | |
.. monoid_algebra.add_comm_group, | |
.. monoid_algebra.non_assoc_semiring } | |
lemma int_cast_def [ring k] [mul_one_class G] (z : β€) : (z : monoid_algebra k G) = single 1 z := rfl | |
instance [ring k] [monoid G] : ring (monoid_algebra k G) := | |
{ .. monoid_algebra.non_assoc_ring, | |
.. monoid_algebra.semiring } | |
instance [comm_ring k] [comm_semigroup G] : non_unital_comm_ring (monoid_algebra k G) := | |
{ .. monoid_algebra.non_unital_comm_semiring, | |
.. monoid_algebra.non_unital_ring } | |
instance [comm_ring k] [comm_monoid G] : comm_ring (monoid_algebra k G) := | |
{ .. monoid_algebra.non_unital_comm_ring, | |
.. monoid_algebra.ring } | |
variables {S : Type*} | |
instance [monoid R] [semiring k] [distrib_mul_action R k] : | |
has_smul R (monoid_algebra k G) := | |
finsupp.has_smul | |
instance [monoid R] [semiring k] [distrib_mul_action R k] : | |
distrib_mul_action R (monoid_algebra k G) := | |
finsupp.distrib_mul_action G k | |
instance [semiring R] [semiring k] [module R k] : | |
module R (monoid_algebra k G) := | |
finsupp.module G k | |
instance [monoid R] [semiring k] [distrib_mul_action R k] [has_faithful_smul R k] [nonempty G] : | |
has_faithful_smul R (monoid_algebra k G) := | |
finsupp.has_faithful_smul | |
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k] | |
[has_smul R S] [is_scalar_tower R S k] : | |
is_scalar_tower R S (monoid_algebra k G) := | |
finsupp.is_scalar_tower G k | |
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k] | |
[smul_comm_class R S k] : | |
smul_comm_class R S (monoid_algebra k G) := | |
finsupp.smul_comm_class G k | |
instance [monoid R] [semiring k] [distrib_mul_action R k] [distrib_mul_action Rα΅α΅α΅ k] | |
[is_central_scalar R k] : | |
is_central_scalar R (monoid_algebra k G) := | |
finsupp.is_central_scalar G k | |
/-- This is not an instance as it conflicts with `monoid_algebra.distrib_mul_action` when `G = kΛ£`. | |
-/ | |
def comap_distrib_mul_action_self [group G] [semiring k] : | |
distrib_mul_action G (monoid_algebra k G) := | |
finsupp.comap_distrib_mul_action | |
end derived_instances | |
section misc_theorems | |
variables [semiring k] | |
local attribute [reducible] monoid_algebra | |
lemma mul_apply [decidable_eq G] [has_mul G] (f g : monoid_algebra k G) (x : G) : | |
(f * g) x = (f.sum $ Ξ»aβ bβ, g.sum $ Ξ»aβ bβ, if aβ * aβ = x then bβ * bβ else 0) := | |
begin | |
rw [mul_def], | |
simp only [finsupp.sum_apply, single_apply], | |
end | |
lemma mul_apply_antidiagonal [has_mul G] (f g : monoid_algebra k G) (x : G) (s : finset (G Γ G)) | |
(hs : β {p : G Γ G}, p β s β p.1 * p.2 = x) : | |
(f * g) x = β p in s, (f p.1 * g p.2) := | |
let F : G Γ G β k := Ξ» p, by classical; exact if p.1 * p.2 = x then f p.1 * g p.2 else 0 in | |
calc (f * g) x = (β aβ in f.support, β aβ in g.support, F (aβ, aβ)) : | |
mul_apply f g x | |
... = β p in f.support ΓΛ’ g.support, F p : finset.sum_product.symm | |
... = β p in (f.support ΓΛ’ g.support).filter (Ξ» p : G Γ G, p.1 * p.2 = x), f p.1 * g p.2 : | |
(finset.sum_filter _ _).symm | |
... = β p in s.filter (Ξ» p : G Γ G, p.1 β f.support β§ p.2 β g.support), f p.1 * g p.2 : | |
sum_congr (by { ext, simp only [mem_filter, mem_product, hs, and_comm] }) (Ξ» _ _, rfl) | |
... = β p in s, f p.1 * g p.2 : sum_subset (filter_subset _ _) $ Ξ» p hps hp, | |
begin | |
simp only [mem_filter, mem_support_iff, not_and, not_not] at hp β’, | |
by_cases h1 : f p.1 = 0, | |
{ rw [h1, zero_mul] }, | |
{ rw [hp hps h1, mul_zero] } | |
end | |
lemma support_mul [has_mul G] [decidable_eq G] (a b : monoid_algebra k G) : | |
(a * b).support β a.support.bUnion (Ξ»aβ, b.support.bUnion $ Ξ»aβ, {aβ * aβ}) := | |
subset.trans support_sum $ bUnion_mono $ assume aβ _, | |
subset.trans support_sum $ bUnion_mono $ assume aβ _, support_single_subset | |
@[simp] lemma single_mul_single [has_mul G] {aβ aβ : G} {bβ bβ : k} : | |
(single aβ bβ : monoid_algebra k G) * single aβ bβ = single (aβ * aβ) (bβ * bβ) := | |
(sum_single_index (by simp only [zero_mul, single_zero, sum_zero])).trans | |
(sum_single_index (by rw [mul_zero, single_zero])) | |
@[simp] lemma single_pow [monoid G] {a : G} {b : k} : | |
β n : β, (single a b : monoid_algebra k G)^n = single (a^n) (b ^ n) | |
| 0 := by { simp only [pow_zero], refl } | |
| (n+1) := by simp only [pow_succ, single_pow n, single_mul_single] | |
section | |
/-- Like `finsupp.map_domain_zero`, but for the `1` we define in this file -/ | |
@[simp] lemma map_domain_one {Ξ± : Type*} {Ξ² : Type*} {Ξ±β : Type*} | |
[semiring Ξ²] [has_one Ξ±] [has_one Ξ±β] {F : Type*} [one_hom_class F Ξ± Ξ±β] (f : F) : | |
(map_domain f (1 : monoid_algebra Ξ² Ξ±) : monoid_algebra Ξ² Ξ±β) = (1 : monoid_algebra Ξ² Ξ±β) := | |
by simp_rw [one_def, map_domain_single, map_one] | |
/-- Like `finsupp.map_domain_add`, but for the convolutive multiplication we define in this file -/ | |
lemma map_domain_mul {Ξ± : Type*} {Ξ² : Type*} {Ξ±β : Type*} [semiring Ξ²] [has_mul Ξ±] [has_mul Ξ±β] | |
{F : Type*} [mul_hom_class F Ξ± Ξ±β] (f : F) (x y : monoid_algebra Ξ² Ξ±) : | |
(map_domain f (x * y : monoid_algebra Ξ² Ξ±) : monoid_algebra Ξ² Ξ±β) = | |
(map_domain f x * map_domain f y : monoid_algebra Ξ² Ξ±β) := | |
begin | |
simp_rw [mul_def, map_domain_sum, map_domain_single, map_mul], | |
rw finsupp.sum_map_domain_index, | |
{ congr, | |
ext a b, | |
rw finsupp.sum_map_domain_index, | |
{ simp }, | |
{ simp [mul_add] } }, | |
{ simp }, | |
{ simp [add_mul] } | |
end | |
variables (k G) | |
/-- The embedding of a magma into its magma algebra. -/ | |
@[simps] def of_magma [has_mul G] : G ββ* (monoid_algebra k G) := | |
{ to_fun := Ξ» a, single a 1, | |
map_mul' := Ξ» a b, by simp only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero], } | |
/-- The embedding of a unital magma into its magma algebra. -/ | |
@[simps] def of [mul_one_class G] : G β* monoid_algebra k G := | |
{ to_fun := Ξ» a, single a 1, | |
map_one' := rfl, | |
.. of_magma k G } | |
end | |
lemma smul_of [mul_one_class G] (g : G) (r : k) : | |
r β’ (of k G g) = single g r := by simp | |
lemma of_injective [mul_one_class G] [nontrivial k] : function.injective (of k G) := | |
Ξ» a b h, by simpa using (single_eq_single_iff _ _ _ _).mp h | |
/-- | |
`finsupp.single` as a `monoid_hom` from the product type into the monoid algebra. | |
Note the order of the elements of the product are reversed compared to the arguments of | |
`finsupp.single`. | |
-/ | |
@[simps] def single_hom [mul_one_class G] : k Γ G β* monoid_algebra k G := | |
{ to_fun := Ξ» a, single a.2 a.1, | |
map_one' := rfl, | |
map_mul' := Ξ» a b, single_mul_single.symm } | |
lemma mul_single_apply_aux [has_mul G] (f : monoid_algebra k G) {r : k} | |
{x y z : G} (H : β a, a * x = z β a = y) : | |
(f * single x r) z = f y * r := | |
by classical; exact | |
have A : β aβ bβ, (single x r).sum (Ξ» aβ bβ, ite (aβ * aβ = z) (bβ * bβ) 0) = | |
ite (aβ * x = z) (bβ * r) 0, | |
from Ξ» aβ bβ, sum_single_index $ by simp, | |
calc (f * single x r) z = sum f (Ξ» a b, if (a = y) then (b * r) else 0) : | |
by simp only [mul_apply, A, H] | |
... = if y β f.support then f y * r else 0 : f.support.sum_ite_eq' _ _ | |
... = f y * r : by split_ifs with h; simp at h; simp [h] | |
lemma mul_single_one_apply [mul_one_class G] (f : monoid_algebra k G) (r : k) (x : G) : | |
(f * single 1 r) x = f x * r := | |
f.mul_single_apply_aux $ Ξ» a, by rw [mul_one] | |
lemma support_mul_single [right_cancel_semigroup G] | |
(f : monoid_algebra k G) (r : k) (hr : β y, y * r = 0 β y = 0) (x : G) : | |
(f * single x r).support = f.support.map (mul_right_embedding x) := | |
begin | |
ext y, simp only [mem_support_iff, mem_map, exists_prop, mul_right_embedding_apply], | |
by_cases H : β a, a * x = y, | |
{ rcases H with β¨a, rflβ©, | |
rw [mul_single_apply_aux f (Ξ» _, mul_left_inj x)], | |
simp [hr] }, | |
{ push_neg at H, | |
classical, | |
simp [mul_apply, H] } | |
end | |
lemma single_mul_apply_aux [has_mul G] (f : monoid_algebra k G) {r : k} {x y z : G} | |
(H : β a, x * a = y β a = z) : | |
(single x r * f) y = r * f z := | |
by classical; exact ( | |
have f.sum (Ξ» a b, ite (x * a = y) (0 * b) 0) = 0, by simp, | |
calc (single x r * f) y = sum f (Ξ» a b, ite (x * a = y) (r * b) 0) : | |
(mul_apply _ _ _).trans $ sum_single_index (by exact this) | |
... = f.sum (Ξ» a b, ite (a = z) (r * b) 0) : by simp only [H] | |
... = if z β f.support then (r * f z) else 0 : f.support.sum_ite_eq' _ _ | |
... = _ : by split_ifs with h; simp at h; simp [h]) | |
lemma single_one_mul_apply [mul_one_class G] (f : monoid_algebra k G) (r : k) (x : G) : | |
(single 1 r * f) x = r * f x := | |
f.single_mul_apply_aux $ Ξ» a, by rw [one_mul] | |
lemma support_single_mul [left_cancel_semigroup G] | |
(f : monoid_algebra k G) (r : k) (hr : β y, r * y = 0 β y = 0) (x : G) : | |
(single x r * f).support = f.support.map (mul_left_embedding x) := | |
begin | |
ext y, simp only [mem_support_iff, mem_map, exists_prop, mul_left_embedding_apply], | |
by_cases H : β a, x * a = y, | |
{ rcases H with β¨a, rflβ©, | |
rw [single_mul_apply_aux f (Ξ» _, mul_right_inj x)], | |
simp [hr] }, | |
{ push_neg at H, | |
classical, | |
simp [mul_apply, H] } | |
end | |
lemma lift_nc_smul [mul_one_class G] {R : Type*} [semiring R] (f : k β+* R) (g : G β* R) (c : k) | |
(Ο : monoid_algebra k G) : | |
lift_nc (f : k β+ R) g (c β’ Ο) = f c * lift_nc (f : k β+ R) g Ο := | |
begin | |
suffices : (lift_nc βf g).comp (smul_add_hom k (monoid_algebra k G) c) = | |
(add_monoid_hom.mul_left (f c)).comp (lift_nc βf g), | |
from add_monoid_hom.congr_fun this Ο, | |
ext a b, simp [mul_assoc] | |
end | |
end misc_theorems | |
/-! #### Non-unital, non-associative algebra structure -/ | |
section non_unital_non_assoc_algebra | |
variables (k) [monoid R] [semiring k] [distrib_mul_action R k] [has_mul G] | |
instance is_scalar_tower_self [is_scalar_tower R k k] : | |
is_scalar_tower R (monoid_algebra k G) (monoid_algebra k G) := | |
β¨Ξ» t a b, | |
begin | |
ext m, | |
classical, | |
simp only [mul_apply, finsupp.smul_sum, smul_ite, smul_mul_assoc, sum_smul_index', zero_mul, | |
if_t_t, implies_true_iff, eq_self_iff_true, sum_zero, coe_smul, smul_eq_mul, pi.smul_apply, | |
smul_zero], | |
endβ© | |
/-- Note that if `k` is a `comm_semiring` then we have `smul_comm_class k k k` and so we can take | |
`R = k` in the below. In other words, if the coefficients are commutative amongst themselves, they | |
also commute with the algebra multiplication. -/ | |
instance smul_comm_class_self [smul_comm_class R k k] : | |
smul_comm_class R (monoid_algebra k G) (monoid_algebra k G) := | |
β¨Ξ» t a b, | |
begin | |
ext m, | |
simp only [mul_apply, finsupp.sum, finset.smul_sum, smul_ite, mul_smul_comm, sum_smul_index', | |
implies_true_iff, eq_self_iff_true, coe_smul, ite_eq_right_iff, smul_eq_mul, pi.smul_apply, | |
mul_zero, smul_zero], | |
endβ© | |
instance smul_comm_class_symm_self [smul_comm_class k R k] : | |
smul_comm_class (monoid_algebra k G) R (monoid_algebra k G) := | |
β¨Ξ» t a b, by { haveI := smul_comm_class.symm k R k, rw β smul_comm, } β© | |
variables {A : Type uβ} [non_unital_non_assoc_semiring A] | |
/-- A non_unital `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its | |
values on the functions `single a 1`. -/ | |
lemma non_unital_alg_hom_ext [distrib_mul_action k A] | |
{Οβ Οβ : monoid_algebra k G βββ[k] A} | |
(h : β x, Οβ (single x 1) = Οβ (single x 1)) : Οβ = Οβ := | |
non_unital_alg_hom.to_distrib_mul_action_hom_injective $ | |
finsupp.distrib_mul_action_hom_ext' $ | |
Ξ» a, distrib_mul_action_hom.ext_ring (h a) | |
/-- See note [partially-applied ext lemmas]. -/ | |
@[ext] lemma non_unital_alg_hom_ext' [distrib_mul_action k A] | |
{Οβ Οβ : monoid_algebra k G βββ[k] A} | |
(h : Οβ.to_mul_hom.comp (of_magma k G) = Οβ.to_mul_hom.comp (of_magma k G)) : Οβ = Οβ := | |
non_unital_alg_hom_ext k $ mul_hom.congr_fun h | |
/-- The functor `G β¦ monoid_algebra k G`, from the category of magmas to the category of non-unital, | |
non-associative algebras over `k` is adjoint to the forgetful functor in the other direction. -/ | |
@[simps] def lift_magma [module k A] [is_scalar_tower k A A] [smul_comm_class k A A] : | |
(G ββ* A) β (monoid_algebra k G βββ[k] A) := | |
{ to_fun := Ξ» f, | |
{ to_fun := Ξ» a, a.sum (Ξ» m t, t β’ f m), | |
map_smul' := Ξ» t' a, | |
begin | |
rw [finsupp.smul_sum, sum_smul_index'], | |
{ simp_rw smul_assoc, }, | |
{ intros m, exact zero_smul k (f m), }, | |
end, | |
map_mul' := Ξ» aβ aβ, | |
begin | |
let g : G β k β A := Ξ» m t, t β’ f m, | |
have hβ : β m, g m 0 = 0, { intros, exact zero_smul k (f m), }, | |
have hβ : β m (tβ tβ : k), g m (tβ + tβ) = g m tβ + g m tβ, { intros, rw β add_smul, }, | |
simp_rw [finsupp.mul_sum, finsupp.sum_mul, smul_mul_smul, β f.map_mul, mul_def, | |
sum_comm aβ aβ, sum_sum_index hβ hβ, sum_single_index (hβ _)], | |
end, | |
.. lift_add_hom (Ξ» x, (smul_add_hom k A).flip (f x)) }, | |
inv_fun := Ξ» F, F.to_mul_hom.comp (of_magma k G), | |
left_inv := Ξ» f, by { ext m, simp only [non_unital_alg_hom.coe_mk, of_magma_apply, | |
non_unital_alg_hom.to_mul_hom_eq_coe, sum_single_index, function.comp_app, one_smul, zero_smul, | |
mul_hom.coe_comp, non_unital_alg_hom.coe_to_mul_hom], }, | |
right_inv := Ξ» F, by { ext m, simp only [non_unital_alg_hom.coe_mk, of_magma_apply, | |
non_unital_alg_hom.to_mul_hom_eq_coe, sum_single_index, function.comp_app, one_smul, zero_smul, | |
mul_hom.coe_comp, non_unital_alg_hom.coe_to_mul_hom], }, } | |
end non_unital_non_assoc_algebra | |
/-! #### Algebra structure -/ | |
section algebra | |
local attribute [reducible] monoid_algebra | |
lemma single_one_comm [comm_semiring k] [mul_one_class G] (r : k) (f : monoid_algebra k G) : | |
single 1 r * f = f * single 1 r := | |
by { ext, rw [single_one_mul_apply, mul_single_one_apply, mul_comm] } | |
/-- `finsupp.single 1` as a `ring_hom` -/ | |
@[simps] def single_one_ring_hom [semiring k] [mul_one_class G] : k β+* monoid_algebra k G := | |
{ map_one' := rfl, | |
map_mul' := Ξ» x y, by rw [single_add_hom, single_mul_single, one_mul], | |
..finsupp.single_add_hom 1} | |
/-- If `f : G β H` is a multiplicative homomorphism between two monoids, then | |
`finsupp.map_domain f` is a ring homomorphism between their monoid algebras. -/ | |
@[simps] | |
def map_domain_ring_hom (k : Type*) {H F : Type*} [semiring k] [monoid G] [monoid H] | |
[monoid_hom_class F G H] (f : F) : | |
monoid_algebra k G β+* monoid_algebra k H := | |
{ map_one' := map_domain_one f, | |
map_mul' := Ξ» x y, map_domain_mul f x y, | |
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra k G β+ monoid_algebra k H) } | |
/-- If two ring homomorphisms from `monoid_algebra k G` are equal on all `single a 1` | |
and `single 1 b`, then they are equal. -/ | |
lemma ring_hom_ext {R} [semiring k] [mul_one_class G] [semiring R] | |
{f g : monoid_algebra k G β+* R} (hβ : β b, f (single 1 b) = g (single 1 b)) | |
(h_of : β a, f (single a 1) = g (single a 1)) : f = g := | |
ring_hom.coe_add_monoid_hom_injective $ add_hom_ext $ Ξ» a b, | |
by rw [β one_mul a, β mul_one b, β single_mul_single, f.coe_add_monoid_hom, | |
g.coe_add_monoid_hom, f.map_mul, g.map_mul, hβ, h_of] | |
/-- If two ring homomorphisms from `monoid_algebra k G` are equal on all `single a 1` | |
and `single 1 b`, then they are equal. | |
See note [partially-applied ext lemmas]. -/ | |
@[ext] lemma ring_hom_ext' {R} [semiring k] [mul_one_class G] [semiring R] | |
{f g : monoid_algebra k G β+* R} (hβ : f.comp single_one_ring_hom = g.comp single_one_ring_hom) | |
(h_of : (f : monoid_algebra k G β* R).comp (of k G) = | |
(g : monoid_algebra k G β* R).comp (of k G)) : | |
f = g := | |
ring_hom_ext (ring_hom.congr_fun hβ) (monoid_hom.congr_fun h_of) | |
/-- | |
The instance `algebra k (monoid_algebra A G)` whenever we have `algebra k A`. | |
In particular this provides the instance `algebra k (monoid_algebra k G)`. | |
-/ | |
instance {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] : | |
algebra k (monoid_algebra A G) := | |
{ smul_def' := Ξ» r a, by { ext, simp [single_one_mul_apply, algebra.smul_def, pi.smul_apply], }, | |
commutes' := Ξ» r f, by { ext, simp [single_one_mul_apply, mul_single_one_apply, | |
algebra.commutes], }, | |
..single_one_ring_hom.comp (algebra_map k A) } | |
/-- `finsupp.single 1` as a `alg_hom` -/ | |
@[simps] | |
def single_one_alg_hom {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] : | |
A ββ[k] monoid_algebra A G := | |
{ commutes' := Ξ» r, by { ext, simp, refl, }, ..single_one_ring_hom} | |
@[simp] lemma coe_algebra_map {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] : | |
β(algebra_map k (monoid_algebra A G)) = single 1 β (algebra_map k A) := | |
rfl | |
lemma single_eq_algebra_map_mul_of [comm_semiring k] [monoid G] (a : G) (b : k) : | |
single a b = algebra_map k (monoid_algebra k G) b * of k G a := | |
by simp | |
lemma single_algebra_map_eq_algebra_map_mul_of {A : Type*} [comm_semiring k] [semiring A] | |
[algebra k A] [monoid G] (a : G) (b : k) : | |
single a (algebra_map k A b) = algebra_map k (monoid_algebra A G) b * of A G a := | |
by simp | |
lemma induction_on [semiring k] [monoid G] {p : monoid_algebra k G β Prop} (f : monoid_algebra k G) | |
(hM : β g, p (of k G g)) (hadd : β f g : monoid_algebra k G, p f β p g β p (f + g)) | |
(hsmul : β (r : k) f, p f β p (r β’ f)) : p f := | |
begin | |
refine finsupp.induction_linear f _ (Ξ» f g hf hg, hadd f g hf hg) (Ξ» g r, _), | |
{ simpa using hsmul 0 (of k G 1) (hM 1) }, | |
{ convert hsmul r (of k G g) (hM g), | |
simp only [mul_one, smul_single', of_apply] }, | |
end | |
end algebra | |
section lift | |
variables {k G} [comm_semiring k] [monoid G] | |
variables {A : Type uβ} [semiring A] [algebra k A] {B : Type*} [semiring B] [algebra k B] | |
/-- `lift_nc_ring_hom` as a `alg_hom`, for when `f` is an `alg_hom` -/ | |
def lift_nc_alg_hom (f : A ββ[k] B) (g : G β* B) (h_comm : β x y, commute (f x) (g y)) : | |
monoid_algebra A G ββ[k] B := | |
{ to_fun := lift_nc_ring_hom (f : A β+* B) g h_comm, | |
commutes' := by simp [lift_nc_ring_hom], | |
..(lift_nc_ring_hom (f : A β+* B) g h_comm)} | |
/-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its | |
values on the functions `single a 1`. -/ | |
lemma alg_hom_ext β¦Οβ Οβ : monoid_algebra k G ββ[k] Aβ¦ | |
(h : β x, Οβ (single x 1) = Οβ (single x 1)) : Οβ = Οβ := | |
alg_hom.to_linear_map_injective $ finsupp.lhom_ext' $ Ξ» a, linear_map.ext_ring (h a) | |
/-- See note [partially-applied ext lemmas]. -/ | |
@[ext] lemma alg_hom_ext' β¦Οβ Οβ : monoid_algebra k G ββ[k] Aβ¦ | |
(h : (Οβ : monoid_algebra k G β* A).comp (of k G) = | |
(Οβ : monoid_algebra k G β* A).comp (of k G)) : Οβ = Οβ := | |
alg_hom_ext $ monoid_hom.congr_fun h | |
variables (k G A) | |
/-- Any monoid homomorphism `G β* A` can be lifted to an algebra homomorphism | |
`monoid_algebra k G ββ[k] A`. -/ | |
def lift : (G β* A) β (monoid_algebra k G ββ[k] A) := | |
{ inv_fun := Ξ» f, (f : monoid_algebra k G β* A).comp (of k G), | |
to_fun := Ξ» F, lift_nc_alg_hom (algebra.of_id k A) F $ Ξ» _ _, algebra.commutes _ _, | |
left_inv := Ξ» f, by { ext, simp [lift_nc_alg_hom, lift_nc_ring_hom] }, | |
right_inv := Ξ» F, by { ext, simp [lift_nc_alg_hom, lift_nc_ring_hom] } } | |
variables {k G A} | |
lemma lift_apply' (F : G β* A) (f : monoid_algebra k G) : | |
lift k G A F f = f.sum (Ξ» a b, (algebra_map k A b) * F a) := rfl | |
lemma lift_apply (F : G β* A) (f : monoid_algebra k G) : | |
lift k G A F f = f.sum (Ξ» a b, b β’ F a) := | |
by simp only [lift_apply', algebra.smul_def] | |
lemma lift_def (F : G β* A) : | |
β(lift k G A F) = lift_nc ((algebra_map k A : k β+* A) : k β+ A) F := | |
rfl | |
@[simp] lemma lift_symm_apply (F : monoid_algebra k G ββ[k] A) (x : G) : | |
(lift k G A).symm F x = F (single x 1) := rfl | |
lemma lift_of (F : G β* A) (x) : | |
lift k G A F (of k G x) = F x := | |
by rw [of_apply, β lift_symm_apply, equiv.symm_apply_apply] | |
@[simp] lemma lift_single (F : G β* A) (a b) : | |
lift k G A F (single a b) = b β’ F a := | |
by rw [lift_def, lift_nc_single, algebra.smul_def, ring_hom.coe_add_monoid_hom] | |
lemma lift_unique' (F : monoid_algebra k G ββ[k] A) : | |
F = lift k G A ((F : monoid_algebra k G β* A).comp (of k G)) := | |
((lift k G A).apply_symm_apply F).symm | |
/-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by | |
its values on `F (single a 1)`. -/ | |
lemma lift_unique (F : monoid_algebra k G ββ[k] A) (f : monoid_algebra k G) : | |
F f = f.sum (Ξ» a b, b β’ F (single a 1)) := | |
by conv_lhs { rw lift_unique' F, simp [lift_apply] } | |
/-- If `f : G β H` is a homomorphism between two magmas, then | |
`finsupp.map_domain f` is a non-unital algebra homomorphism between their magma algebras. -/ | |
@[simps] | |
def map_domain_non_unital_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A] | |
{G H F : Type*} [has_mul G] [has_mul H] [mul_hom_class F G H] (f : F) : | |
monoid_algebra A G βββ[k] monoid_algebra A H := | |
{ map_mul' := Ξ» x y, map_domain_mul f x y, | |
map_smul' := Ξ» r x, map_domain_smul r x, | |
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra A G β+ monoid_algebra A H) } | |
lemma map_domain_algebra_map (k A : Type*) {H F : Type*} [comm_semiring k] [semiring A] | |
[algebra k A] [monoid H] [monoid_hom_class F G H] (f : F) (r : k) : | |
map_domain f (algebra_map k (monoid_algebra A G) r) = | |
algebra_map k (monoid_algebra A H) r := | |
by simp only [coe_algebra_map, map_domain_single, map_one] | |
/-- If `f : G β H` is a multiplicative homomorphism between two monoids, then | |
`finsupp.map_domain f` is an algebra homomorphism between their monoid algebras. -/ | |
@[simps] | |
def map_domain_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A] {H F : Type*} | |
[monoid H] [monoid_hom_class F G H] (f : F) : | |
monoid_algebra A G ββ[k] monoid_algebra A H := | |
{ commutes' := map_domain_algebra_map k A f, | |
..map_domain_ring_hom A f} | |
end lift | |
section | |
local attribute [reducible] monoid_algebra | |
variables (k) | |
/-- When `V` is a `k[G]`-module, multiplication by a group element `g` is a `k`-linear map. -/ | |
def group_smul.linear_map [monoid G] [comm_semiring k] | |
(V : Type uβ) [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V] | |
[is_scalar_tower k (monoid_algebra k G) V] (g : G) : | |
V ββ[k] V := | |
{ to_fun := Ξ» v, (single g (1 : k) β’ v : V), | |
map_add' := Ξ» x y, smul_add (single g (1 : k)) x y, | |
map_smul' := Ξ» c x, smul_algebra_smul_comm _ _ _ } | |
@[simp] | |
lemma group_smul.linear_map_apply [monoid G] [comm_semiring k] | |
(V : Type uβ) [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V] | |
[is_scalar_tower k (monoid_algebra k G) V] (g : G) (v : V) : | |
(group_smul.linear_map k V g) v = (single g (1 : k) β’ v : V) := | |
rfl | |
section | |
variables {k} | |
variables [monoid G] [comm_semiring k] {V W : Type uβ} | |
[add_comm_monoid V] [module k V] [module (monoid_algebra k G) V] | |
[is_scalar_tower k (monoid_algebra k G) V] | |
[add_comm_monoid W] [module k W] [module (monoid_algebra k G) W] | |
[is_scalar_tower k (monoid_algebra k G) W] | |
(f : V ββ[k] W) | |
(h : β (g : G) (v : V), f (single g (1 : k) β’ v : V) = (single g (1 : k) β’ (f v) : W)) | |
include h | |
/-- Build a `k[G]`-linear map from a `k`-linear map and evidence that it is `G`-equivariant. -/ | |
def equivariant_of_linear_of_comm : V ββ[monoid_algebra k G] W := | |
{ to_fun := f, | |
map_add' := Ξ» v v', by simp, | |
map_smul' := Ξ» c v, | |
begin | |
apply finsupp.induction c, | |
{ simp, }, | |
{ intros g r c' nm nz w, | |
dsimp at *, | |
simp only [add_smul, f.map_add, w, add_left_inj, single_eq_algebra_map_mul_of, β smul_smul], | |
erw [algebra_map_smul (monoid_algebra k G) r, algebra_map_smul (monoid_algebra k G) r, | |
f.map_smul, h g v, of_apply], | |
all_goals { apply_instance } } | |
end, } | |
@[simp] | |
lemma equivariant_of_linear_of_comm_apply (v : V) : (equivariant_of_linear_of_comm f h) v = f v := | |
rfl | |
end | |
end | |
section | |
universe ui | |
variable {ΞΉ : Type ui} | |
local attribute [reducible] monoid_algebra | |
lemma prod_single [comm_semiring k] [comm_monoid G] | |
{s : finset ΞΉ} {a : ΞΉ β G} {b : ΞΉ β k} : | |
(β i in s, single (a i) (b i)) = single (β i in s, a i) (β i in s, b i) := | |
finset.cons_induction_on s rfl $ Ξ» a s has ih, by rw [prod_cons has, ih, | |
single_mul_single, prod_cons has, prod_cons has] | |
end | |
section -- We now prove some additional statements that hold for group algebras. | |
variables [semiring k] [group G] | |
local attribute [reducible] monoid_algebra | |
@[simp] | |
lemma mul_single_apply (f : monoid_algebra k G) (r : k) (x y : G) : | |
(f * single x r) y = f (y * xβ»ΒΉ) * r := | |
f.mul_single_apply_aux $ Ξ» a, eq_mul_inv_iff_mul_eq.symm | |
@[simp] | |
lemma single_mul_apply (r : k) (x : G) (f : monoid_algebra k G) (y : G) : | |
(single x r * f) y = r * f (xβ»ΒΉ * y) := | |
f.single_mul_apply_aux $ Ξ» z, eq_inv_mul_iff_mul_eq.symm | |
lemma mul_apply_left (f g : monoid_algebra k G) (x : G) : | |
(f * g) x = (f.sum $ Ξ» a b, b * (g (aβ»ΒΉ * x))) := | |
calc (f * g) x = sum f (Ξ» a b, (single a b * g) x) : | |
by rw [β finsupp.sum_apply, β finsupp.sum_mul, f.sum_single] | |
... = _ : by simp only [single_mul_apply, finsupp.sum] | |
-- If we'd assumed `comm_semiring`, we could deduce this from `mul_apply_left`. | |
lemma mul_apply_right (f g : monoid_algebra k G) (x : G) : | |
(f * g) x = (g.sum $ Ξ»a b, (f (x * aβ»ΒΉ)) * b) := | |
calc (f * g) x = sum g (Ξ» a b, (f * single a b) x) : | |
by rw [β finsupp.sum_apply, β finsupp.mul_sum, g.sum_single] | |
... = _ : by simp only [mul_single_apply, finsupp.sum] | |
end | |
section span | |
variables [semiring k] [mul_one_class G] | |
/-- An element of `monoid_algebra R M` is in the subalgebra generated by its support. -/ | |
lemma mem_span_support (f : monoid_algebra k G) : | |
f β submodule.span k (of k G '' (f.support : set G)) := | |
by rw [of, monoid_hom.coe_mk, β finsupp.supported_eq_span_single, finsupp.mem_supported] | |
end span | |
section opposite | |
open finsupp mul_opposite | |
variables [semiring k] | |
/-- The opposite of an `monoid_algebra R I` equivalent as a ring to | |
the `monoid_algebra Rα΅α΅α΅ Iα΅α΅α΅` over the opposite ring, taking elements to their opposite. -/ | |
@[simps {simp_rhs := tt}] protected noncomputable def op_ring_equiv [monoid G] : | |
(monoid_algebra k G)α΅α΅α΅ β+* monoid_algebra kα΅α΅α΅ Gα΅α΅α΅ := | |
{ map_mul' := begin | |
dsimp only [add_equiv.to_fun_eq_coe, βadd_equiv.coe_to_add_monoid_hom], | |
rw add_monoid_hom.map_mul_iff, | |
ext iβ rβ iβ rβ : 6, | |
simp | |
end, | |
..op_add_equiv.symm.trans $ (finsupp.map_range.add_equiv (op_add_equiv : k β+ kα΅α΅α΅)).trans $ | |
finsupp.dom_congr op_equiv } | |
@[simp] lemma op_ring_equiv_single [monoid G] (r : k) (x : G) : | |
monoid_algebra.op_ring_equiv (op (single x r)) = single (op x) (op r) := | |
by simp | |
@[simp] lemma op_ring_equiv_symm_single [monoid G] (r : kα΅α΅α΅) (x : Gα΅α΅α΅) : | |
monoid_algebra.op_ring_equiv.symm (single x r) = op (single x.unop r.unop) := | |
by simp | |
end opposite | |
section submodule | |
variables {k G} [comm_semiring k] [monoid G] | |
variables {V : Type*} [add_comm_monoid V] | |
variables [module k V] [module (monoid_algebra k G) V] [is_scalar_tower k (monoid_algebra k G) V] | |
/-- A submodule over `k` which is stable under scalar multiplication by elements of `G` is a | |
submodule over `monoid_algebra k G` -/ | |
def submodule_of_smul_mem (W : submodule k V) (h : β (g : G) (v : V), v β W β (of k G g) β’ v β W) : | |
submodule (monoid_algebra k G) V := | |
{ carrier := W, | |
zero_mem' := W.zero_mem', | |
add_mem' := W.add_mem', | |
smul_mem' := begin | |
intros f v hv, | |
rw [βfinsupp.sum_single f, finsupp.sum, finset.sum_smul], | |
simp_rw [βsmul_of, smul_assoc], | |
exact submodule.sum_smul_mem W _ (Ξ» g _, h g v hv) | |
end } | |
end submodule | |
end monoid_algebra | |
/-! ### Additive monoids -/ | |
section | |
variables [semiring k] | |
/-- | |
The monoid algebra over a semiring `k` generated by the additive monoid `G`. | |
It is the type of finite formal `k`-linear combinations of terms of `G`, | |
endowed with the convolution product. | |
-/ | |
@[derive [inhabited, add_comm_monoid]] | |
def add_monoid_algebra := G ββ k | |
instance : has_coe_to_fun (add_monoid_algebra k G) (Ξ» _, G β k) := | |
finsupp.has_coe_to_fun | |
end | |
namespace add_monoid_algebra | |
variables {k G} | |
section | |
variables [semiring k] [non_unital_non_assoc_semiring R] | |
/-- A non-commutative version of `add_monoid_algebra.lift`: given a additive homomorphism `f : k β+ | |
R` and a map `g : multiplicative G β R`, returns the additive | |
homomorphism from `add_monoid_algebra k G` such that `lift_nc f g (single a b) = f b * g a`. If `f` | |
is a ring homomorphism and the range of either `f` or `g` is in center of `R`, then the result is a | |
ring homomorphism. If `R` is a `k`-algebra and `f = algebra_map k R`, then the result is an algebra | |
homomorphism called `add_monoid_algebra.lift`. -/ | |
def lift_nc (f : k β+ R) (g : multiplicative G β R) : add_monoid_algebra k G β+ R := | |
lift_add_hom (Ξ» x : G, (add_monoid_hom.mul_right (g $ multiplicative.of_add x)).comp f) | |
@[simp] lemma lift_nc_single (f : k β+ R) (g : multiplicative G β R) (a : G) (b : k) : | |
lift_nc f g (single a b) = f b * g (multiplicative.of_add a) := | |
lift_add_hom_apply_single _ _ _ | |
end | |
section has_mul | |
variables [semiring k] [has_add G] | |
/-- The product of `f g : add_monoid_algebra k G` is the finitely supported function | |
whose value at `a` is the sum of `f x * g y` over all pairs `x, y` | |
such that `x + y = a`. (Think of the product of multivariate | |
polynomials where `Ξ±` is the additive monoid of monomial exponents.) -/ | |
instance : has_mul (add_monoid_algebra k G) := | |
β¨Ξ»f g, f.sum $ Ξ»aβ bβ, g.sum $ Ξ»aβ bβ, single (aβ + aβ) (bβ * bβ)β© | |
lemma mul_def {f g : add_monoid_algebra k G} : | |
f * g = (f.sum $ Ξ»aβ bβ, g.sum $ Ξ»aβ bβ, single (aβ + aβ) (bβ * bβ)) := | |
rfl | |
instance : non_unital_non_assoc_semiring (add_monoid_algebra k G) := | |
{ zero := 0, | |
mul := (*), | |
add := (+), | |
left_distrib := assume f g h, by simp only [mul_def, sum_add_index, mul_add, mul_zero, | |
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add], | |
right_distrib := assume f g h, by simp only [mul_def, sum_add_index, add_mul, mul_zero, zero_mul, | |
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero, | |
sum_add], | |
zero_mul := assume f, by simp only [mul_def, sum_zero_index], | |
mul_zero := assume f, by simp only [mul_def, sum_zero_index, sum_zero], | |
nsmul := Ξ» n f, n β’ f, | |
nsmul_zero' := by { intros, ext, simp [-nsmul_eq_mul, add_smul] }, | |
nsmul_succ' := by { intros, ext, simp [-nsmul_eq_mul, nat.succ_eq_one_add, add_smul] }, | |
.. finsupp.add_comm_monoid } | |
variables [semiring R] | |
lemma lift_nc_mul {g_hom : Type*} [mul_hom_class g_hom (multiplicative G) R] (f : k β+* R) | |
(g : g_hom) (a b : add_monoid_algebra k G) | |
(h_comm : β {x y}, y β a.support β commute (f (b x)) (g $ multiplicative.of_add y)) : | |
lift_nc (f : k β+ R) g (a * b) = lift_nc (f : k β+ R) g a * lift_nc (f : k β+ R) g b := | |
(monoid_algebra.lift_nc_mul f g _ _ @h_comm : _) | |
end has_mul | |
section has_one | |
variables [semiring k] [has_zero G] [non_assoc_semiring R] | |
/-- The unit of the multiplication is `single 1 1`, i.e. the function | |
that is `1` at `0` and zero elsewhere. -/ | |
instance : has_one (add_monoid_algebra k G) := | |
β¨single 0 1β© | |
lemma one_def : (1 : add_monoid_algebra k G) = single 0 1 := | |
rfl | |
@[simp] lemma lift_nc_one {g_hom : Type*} [one_hom_class g_hom (multiplicative G) R] | |
(f : k β+* R) (g : g_hom) : | |
lift_nc (f : k β+ R) g 1 = 1 := | |
(monoid_algebra.lift_nc_one f g : _) | |
end has_one | |
section semigroup | |
variables [semiring k] [add_semigroup G] | |
instance : non_unital_semiring (add_monoid_algebra k G) := | |
{ zero := 0, | |
mul := (*), | |
add := (+), | |
mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index, | |
sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, | |
add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add], | |
.. add_monoid_algebra.non_unital_non_assoc_semiring } | |
end semigroup | |
section mul_one_class | |
variables [semiring k] [add_zero_class G] | |
instance : non_assoc_semiring (add_monoid_algebra k G) := | |
{ one := 1, | |
mul := (*), | |
zero := 0, | |
add := (+), | |
nat_cast := Ξ» n, single 0 n, | |
nat_cast_zero := by simp [nat.cast], | |
nat_cast_succ := Ξ» _, by simp [nat.cast]; refl, | |
one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul, | |
single_zero, sum_zero, zero_add, one_mul, sum_single], | |
mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero, | |
single_zero, sum_zero, add_zero, mul_one, sum_single], | |
.. add_monoid_algebra.non_unital_non_assoc_semiring } | |
lemma nat_cast_def (n : β) : (n : add_monoid_algebra k G) = single 0 n := rfl | |
end mul_one_class | |
/-! #### Semiring structure -/ | |
section semiring | |
instance {R : Type*} [monoid R] [semiring k] [distrib_mul_action R k] : | |
has_smul R (add_monoid_algebra k G) := | |
finsupp.has_smul | |
variables [semiring k] [add_monoid G] | |
instance : semiring (add_monoid_algebra k G) := | |
{ one := 1, | |
mul := (*), | |
zero := 0, | |
add := (+), | |
.. add_monoid_algebra.non_unital_semiring, | |
.. add_monoid_algebra.non_assoc_semiring, } | |
variables [semiring R] | |
/-- `lift_nc` as a `ring_hom`, for when `f` and `g` commute -/ | |
def lift_nc_ring_hom (f : k β+* R) (g : multiplicative G β* R) | |
(h_comm : β x y, commute (f x) (g y)) : | |
add_monoid_algebra k G β+* R := | |
{ to_fun := lift_nc (f : k β+ R) g, | |
map_one' := lift_nc_one _ _, | |
map_mul' := Ξ» a b, lift_nc_mul _ _ _ _ $ Ξ» _ _ _, h_comm _ _, | |
..(lift_nc (f : k β+ R) g)} | |
end semiring | |
instance [comm_semiring k] [add_comm_semigroup G] : | |
non_unital_comm_semiring (add_monoid_algebra k G) := | |
{ mul_comm := @mul_comm (monoid_algebra k $ multiplicative G) _, | |
.. add_monoid_algebra.non_unital_semiring } | |
instance [semiring k] [nontrivial k] [nonempty G] : nontrivial (add_monoid_algebra k G) := | |
finsupp.nontrivial | |
/-! #### Derived instances -/ | |
section derived_instances | |
instance [comm_semiring k] [add_comm_monoid G] : comm_semiring (add_monoid_algebra k G) := | |
{ .. add_monoid_algebra.non_unital_comm_semiring, | |
.. add_monoid_algebra.semiring } | |
instance [semiring k] [subsingleton k] : unique (add_monoid_algebra k G) := | |
finsupp.unique_of_right | |
instance [ring k] : add_comm_group (add_monoid_algebra k G) := | |
finsupp.add_comm_group | |
instance [ring k] [has_add G] : non_unital_non_assoc_ring (add_monoid_algebra k G) := | |
{ .. add_monoid_algebra.add_comm_group, | |
.. add_monoid_algebra.non_unital_non_assoc_semiring } | |
instance [ring k] [add_semigroup G] : non_unital_ring (add_monoid_algebra k G) := | |
{ .. add_monoid_algebra.add_comm_group, | |
.. add_monoid_algebra.non_unital_semiring } | |
instance [ring k] [add_zero_class G] : non_assoc_ring (add_monoid_algebra k G) := | |
{ int_cast := Ξ» z, single 0 (z : k), | |
int_cast_of_nat := Ξ» n, by simpa, | |
int_cast_neg_succ_of_nat := Ξ» n, by simpa, | |
.. add_monoid_algebra.add_comm_group, | |
.. add_monoid_algebra.non_assoc_semiring } | |
lemma int_cast_def [ring k] [add_zero_class G] (z : β€) : | |
(z : add_monoid_algebra k G) = single 0 z := rfl | |
instance [ring k] [add_monoid G] : ring (add_monoid_algebra k G) := | |
{ .. add_monoid_algebra.non_assoc_ring, | |
.. add_monoid_algebra.semiring } | |
instance [comm_ring k] [add_comm_semigroup G] : non_unital_comm_ring (add_monoid_algebra k G) := | |
{ .. add_monoid_algebra.non_unital_comm_semiring, | |
.. add_monoid_algebra.non_unital_ring } | |
instance [comm_ring k] [add_comm_monoid G] : comm_ring (add_monoid_algebra k G) := | |
{ .. add_monoid_algebra.non_unital_comm_ring, | |
.. add_monoid_algebra.ring } | |
variables {S : Type*} | |
instance [monoid R] [semiring k] [distrib_mul_action R k] : | |
distrib_mul_action R (add_monoid_algebra k G) := | |
finsupp.distrib_mul_action G k | |
instance [monoid R] [semiring k] [distrib_mul_action R k] [has_faithful_smul R k] [nonempty G] : | |
has_faithful_smul R (add_monoid_algebra k G) := | |
finsupp.has_faithful_smul | |
instance [semiring R] [semiring k] [module R k] : module R (add_monoid_algebra k G) := | |
finsupp.module G k | |
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k] | |
[has_smul R S] [is_scalar_tower R S k] : | |
is_scalar_tower R S (add_monoid_algebra k G) := | |
finsupp.is_scalar_tower G k | |
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k] | |
[smul_comm_class R S k] : | |
smul_comm_class R S (add_monoid_algebra k G) := | |
finsupp.smul_comm_class G k | |
instance [monoid R] [semiring k] [distrib_mul_action R k] [distrib_mul_action Rα΅α΅α΅ k] | |
[is_central_scalar R k] : | |
is_central_scalar R (add_monoid_algebra k G) := | |
finsupp.is_central_scalar G k | |
/-! It is hard to state the equivalent of `distrib_mul_action G (add_monoid_algebra k G)` | |
because we've never discussed actions of additive groups. -/ | |
end derived_instances | |
section misc_theorems | |
variables [semiring k] | |
lemma mul_apply [decidable_eq G] [has_add G] (f g : add_monoid_algebra k G) (x : G) : | |
(f * g) x = (f.sum $ Ξ»aβ bβ, g.sum $ Ξ»aβ bβ, if aβ + aβ = x then bβ * bβ else 0) := | |
@monoid_algebra.mul_apply k (multiplicative G) _ _ _ _ _ _ | |
lemma mul_apply_antidiagonal [has_add G] (f g : add_monoid_algebra k G) (x : G) (s : finset (G Γ G)) | |
(hs : β {p : G Γ G}, p β s β p.1 + p.2 = x) : | |
(f * g) x = β p in s, (f p.1 * g p.2) := | |
@monoid_algebra.mul_apply_antidiagonal k (multiplicative G) _ _ _ _ _ s @hs | |
lemma support_mul [decidable_eq G] [has_add G] (a b : add_monoid_algebra k G) : | |
(a * b).support β a.support.bUnion (Ξ»aβ, b.support.bUnion $ Ξ»aβ, {aβ + aβ}) := | |
@monoid_algebra.support_mul k (multiplicative G) _ _ _ _ _ | |
lemma single_mul_single [has_add G] {aβ aβ : G} {bβ bβ : k} : | |
(single aβ bβ * single aβ bβ : add_monoid_algebra k G) = single (aβ + aβ) (bβ * bβ) := | |
@monoid_algebra.single_mul_single k (multiplicative G) _ _ _ _ _ _ | |
-- This should be a `@[simp]` lemma, but the simp_nf linter times out if we add this. | |
-- Probably the correct fix is to make a `[add_]monoid_algebra.single` with the correct type, | |
-- instead of relying on `finsupp.single`. | |
lemma single_pow [add_monoid G] {a : G} {b : k} : | |
β n : β, ((single a b)^n : add_monoid_algebra k G) = single (n β’ a) (b ^ n) | |
| 0 := by { simp only [pow_zero, zero_nsmul], refl } | |
| (n+1) := | |
by rw [pow_succ, pow_succ, single_pow n, single_mul_single, add_comm, add_nsmul, one_nsmul] | |
/-- Like `finsupp.map_domain_zero`, but for the `1` we define in this file -/ | |
@[simp] lemma map_domain_one {Ξ± : Type*} {Ξ² : Type*} {Ξ±β : Type*} | |
[semiring Ξ²] [has_zero Ξ±] [has_zero Ξ±β] {F : Type*} [zero_hom_class F Ξ± Ξ±β] (f : F) : | |
(map_domain f (1 : add_monoid_algebra Ξ² Ξ±) : add_monoid_algebra Ξ² Ξ±β) = | |
(1 : add_monoid_algebra Ξ² Ξ±β) := | |
by simp_rw [one_def, map_domain_single, map_zero] | |
/-- Like `finsupp.map_domain_add`, but for the convolutive multiplication we define in this file -/ | |
lemma map_domain_mul {Ξ± : Type*} {Ξ² : Type*} {Ξ±β : Type*} [semiring Ξ²] [has_add Ξ±] [has_add Ξ±β] | |
{F : Type*} [add_hom_class F Ξ± Ξ±β] (f : F) (x y : add_monoid_algebra Ξ² Ξ±) : | |
(map_domain f (x * y : add_monoid_algebra Ξ² Ξ±) : add_monoid_algebra Ξ² Ξ±β) = | |
(map_domain f x * map_domain f y : add_monoid_algebra Ξ² Ξ±β) := | |
begin | |
simp_rw [mul_def, map_domain_sum, map_domain_single, map_add], | |
rw finsupp.sum_map_domain_index, | |
{ congr, | |
ext a b, | |
rw finsupp.sum_map_domain_index, | |
{ simp }, | |
{ simp [mul_add] } }, | |
{ simp }, | |
{ simp [add_mul] } | |
end | |
section | |
variables (k G) | |
/-- The embedding of an additive magma into its additive magma algebra. -/ | |
@[simps] def of_magma [has_add G] : multiplicative G ββ* add_monoid_algebra k G := | |
{ to_fun := Ξ» a, single a 1, | |
map_mul' := Ξ» a b, by simpa only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero], } | |
/-- Embedding of a magma with zero into its magma algebra. -/ | |
def of [add_zero_class G] : multiplicative G β* add_monoid_algebra k G := | |
{ to_fun := Ξ» a, single a 1, | |
map_one' := rfl, | |
.. of_magma k G } | |
/-- Embedding of a magma with zero `G`, into its magma algebra, having `G` as source. -/ | |
def of' : G β add_monoid_algebra k G := Ξ» a, single a 1 | |
end | |
@[simp] lemma of_apply [add_zero_class G] (a : multiplicative G) : of k G a = single a.to_add 1 := | |
rfl | |
@[simp] lemma of'_apply (a : G) : of' k G a = single a 1 := rfl | |
lemma of'_eq_of [add_zero_class G] (a : G) : of' k G a = of k G a := rfl | |
lemma of_injective [nontrivial k] [add_zero_class G] : function.injective (of k G) := | |
Ξ» a b h, by simpa using (single_eq_single_iff _ _ _ _).mp h | |
/-- | |
`finsupp.single` as a `monoid_hom` from the product type into the additive monoid algebra. | |
Note the order of the elements of the product are reversed compared to the arguments of | |
`finsupp.single`. | |
-/ | |
@[simps] def single_hom [add_zero_class G] : k Γ multiplicative G β* add_monoid_algebra k G := | |
{ to_fun := Ξ» a, single a.2.to_add a.1, | |
map_one' := rfl, | |
map_mul' := Ξ» a b, single_mul_single.symm } | |
lemma mul_single_apply_aux [has_add G] (f : add_monoid_algebra k G) (r : k) | |
(x y z : G) (H : β a, a + x = z β a = y) : | |
(f * single x r) z = f y * r := | |
@monoid_algebra.mul_single_apply_aux k (multiplicative G) _ _ _ _ _ _ _ H | |
lemma mul_single_zero_apply [add_zero_class G] (f : add_monoid_algebra k G) (r : k) (x : G) : | |
(f * single 0 r) x = f x * r := | |
f.mul_single_apply_aux r _ _ _ $ Ξ» a, by rw [add_zero] | |
lemma single_mul_apply_aux [has_add G] (f : add_monoid_algebra k G) (r : k) (x y z : G) | |
(H : β a, x + a = y β a = z) : | |
(single x r * f : add_monoid_algebra k G) y = r * f z := | |
@monoid_algebra.single_mul_apply_aux k (multiplicative G) _ _ _ _ _ _ _ H | |
lemma single_zero_mul_apply [add_zero_class G] (f : add_monoid_algebra k G) (r : k) (x : G) : | |
(single 0 r * f : add_monoid_algebra k G) x = r * f x := | |
f.single_mul_apply_aux r _ _ _ $ Ξ» a, by rw [zero_add] | |
lemma mul_single_apply [add_group G] (f : add_monoid_algebra k G) (r : k) (x y : G) : | |
(f * single x r) y = f (y - x) * r := | |
(sub_eq_add_neg y x).symm βΈ | |
@monoid_algebra.mul_single_apply k (multiplicative G) _ _ _ _ _ _ | |
lemma single_mul_apply [add_group G] (r : k) (x : G) (f : add_monoid_algebra k G) (y : G) : | |
(single x r * f : add_monoid_algebra k G) y = r * f (- x + y) := | |
@monoid_algebra.single_mul_apply k (multiplicative G) _ _ _ _ _ _ | |
lemma support_mul_single [add_right_cancel_semigroup G] | |
(f : add_monoid_algebra k G) (r : k) (hr : β y, y * r = 0 β y = 0) (x : G) : | |
(f * single x r : add_monoid_algebra k G).support = f.support.map (add_right_embedding x) := | |
@monoid_algebra.support_mul_single k (multiplicative G) _ _ _ _ hr _ | |
lemma support_single_mul [add_left_cancel_semigroup G] | |
(f : add_monoid_algebra k G) (r : k) (hr : β y, r * y = 0 β y = 0) (x : G) : | |
(single x r * f : add_monoid_algebra k G).support = f.support.map (add_left_embedding x) := | |
@monoid_algebra.support_single_mul k (multiplicative G) _ _ _ _ hr _ | |
lemma lift_nc_smul {R : Type*} [add_zero_class G] [semiring R] (f : k β+* R) | |
(g : multiplicative G β* R) (c : k) (Ο : monoid_algebra k G) : | |
lift_nc (f : k β+ R) g (c β’ Ο) = f c * lift_nc (f : k β+ R) g Ο := | |
@monoid_algebra.lift_nc_smul k (multiplicative G) _ _ _ _ f g c Ο | |
lemma induction_on [add_monoid G] {p : add_monoid_algebra k G β Prop} (f : add_monoid_algebra k G) | |
(hM : β g, p (of k G (multiplicative.of_add g))) | |
(hadd : β f g : add_monoid_algebra k G, p f β p g β p (f + g)) | |
(hsmul : β (r : k) f, p f β p (r β’ f)) : p f := | |
begin | |
refine finsupp.induction_linear f _ (Ξ» f g hf hg, hadd f g hf hg) (Ξ» g r, _), | |
{ simpa using hsmul 0 (of k G (multiplicative.of_add 0)) (hM 0) }, | |
{ convert hsmul r (of k G (multiplicative.of_add g)) (hM g), | |
simp only [mul_one, to_add_of_add, smul_single', of_apply] }, | |
end | |
/-- If `f : G β H` is an additive homomorphism between two additive monoids, then | |
`finsupp.map_domain f` is a ring homomorphism between their add monoid algebras. -/ | |
@[simps] | |
def map_domain_ring_hom (k : Type*) [semiring k] {H F : Type*} [add_monoid G] [add_monoid H] | |
[add_monoid_hom_class F G H] (f : F) : | |
add_monoid_algebra k G β+* add_monoid_algebra k H := | |
{ map_one' := map_domain_one f, | |
map_mul' := Ξ» x y, map_domain_mul f x y, | |
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra k G β+ monoid_algebra k H) } | |
end misc_theorems | |
section span | |
variables [semiring k] | |
/-- An element of `add_monoid_algebra R M` is in the submodule generated by its support. -/ | |
lemma mem_span_support [add_zero_class G] (f : add_monoid_algebra k G) : | |
f β submodule.span k (of k G '' (f.support : set G)) := | |
by rw [of, monoid_hom.coe_mk, β finsupp.supported_eq_span_single, finsupp.mem_supported] | |
/-- An element of `add_monoid_algebra R M` is in the subalgebra generated by its support, using | |
unbundled inclusion. -/ | |
lemma mem_span_support' (f : add_monoid_algebra k G) : | |
f β submodule.span k (of' k G '' (f.support : set G)) := | |
by rw [of', β finsupp.supported_eq_span_single, finsupp.mem_supported] | |
end span | |
end add_monoid_algebra | |
/-! | |
#### Conversions between `add_monoid_algebra` and `monoid_algebra` | |
We have not defined `add_monoid_algebra k G = monoid_algebra k (multiplicative G)` | |
because historically this caused problems; | |
since the changes that have made `nsmul` definitional, this would be possible, | |
but for now we just contruct the ring isomorphisms using `ring_equiv.refl _`. | |
-/ | |
/-- The equivalence between `add_monoid_algebra` and `monoid_algebra` in terms of | |
`multiplicative` -/ | |
protected def add_monoid_algebra.to_multiplicative [semiring k] [has_add G] : | |
add_monoid_algebra k G β+* monoid_algebra k (multiplicative G) := | |
{ to_fun := equiv_map_domain multiplicative.of_add, | |
map_mul' := Ξ» x y, begin | |
repeat {rw equiv_map_domain_eq_map_domain}, | |
dsimp [multiplicative.of_add], | |
convert monoid_algebra.map_domain_mul (mul_hom.id (multiplicative G)) _ _, | |
end, | |
..finsupp.dom_congr multiplicative.of_add } | |
/-- The equivalence between `monoid_algebra` and `add_monoid_algebra` in terms of `additive` -/ | |
protected def monoid_algebra.to_additive [semiring k] [has_mul G] : | |
monoid_algebra k G β+* add_monoid_algebra k (additive G) := | |
{ to_fun := equiv_map_domain additive.of_mul, | |
map_mul' := Ξ» x y, begin | |
repeat {rw equiv_map_domain_eq_map_domain}, | |
dsimp [additive.of_mul], | |
convert monoid_algebra.map_domain_mul (mul_hom.id G) _ _, | |
end, | |
..finsupp.dom_congr additive.of_mul } | |
namespace add_monoid_algebra | |
variables {k G} | |
/-! #### Non-unital, non-associative algebra structure -/ | |
section non_unital_non_assoc_algebra | |
variables (k) [monoid R] [semiring k] [distrib_mul_action R k] [has_add G] | |
instance is_scalar_tower_self [is_scalar_tower R k k] : | |
is_scalar_tower R (add_monoid_algebra k G) (add_monoid_algebra k G) := | |
@monoid_algebra.is_scalar_tower_self k (multiplicative G) R _ _ _ _ _ | |
/-- Note that if `k` is a `comm_semiring` then we have `smul_comm_class k k k` and so we can take | |
`R = k` in the below. In other words, if the coefficients are commutative amongst themselves, they | |
also commute with the algebra multiplication. -/ | |
instance smul_comm_class_self [smul_comm_class R k k] : | |
smul_comm_class R (add_monoid_algebra k G) (add_monoid_algebra k G) := | |
@monoid_algebra.smul_comm_class_self k (multiplicative G) R _ _ _ _ _ | |
instance smul_comm_class_symm_self [smul_comm_class k R k] : | |
smul_comm_class (add_monoid_algebra k G) R (add_monoid_algebra k G) := | |
@monoid_algebra.smul_comm_class_symm_self k (multiplicative G) R _ _ _ _ _ | |
variables {A : Type uβ} [non_unital_non_assoc_semiring A] | |
/-- A non_unital `k`-algebra homomorphism from `add_monoid_algebra k G` is uniquely defined by its | |
values on the functions `single a 1`. -/ | |
lemma non_unital_alg_hom_ext [distrib_mul_action k A] | |
{Οβ Οβ : add_monoid_algebra k G βββ[k] A} | |
(h : β x, Οβ (single x 1) = Οβ (single x 1)) : Οβ = Οβ := | |
@monoid_algebra.non_unital_alg_hom_ext k (multiplicative G) _ _ _ _ _ Οβ Οβ h | |
/-- See note [partially-applied ext lemmas]. -/ | |
@[ext] lemma non_unital_alg_hom_ext' [distrib_mul_action k A] | |
{Οβ Οβ : add_monoid_algebra k G βββ[k] A} | |
(h : Οβ.to_mul_hom.comp (of_magma k G) = Οβ.to_mul_hom.comp (of_magma k G)) : Οβ = Οβ := | |
@monoid_algebra.non_unital_alg_hom_ext' k (multiplicative G) _ _ _ _ _ Οβ Οβ h | |
/-- The functor `G β¦ add_monoid_algebra k G`, from the category of magmas to the category of | |
non-unital, non-associative algebras over `k` is adjoint to the forgetful functor in the other | |
direction. -/ | |
@[simps] def lift_magma [module k A] [is_scalar_tower k A A] [smul_comm_class k A A] : | |
(multiplicative G ββ* A) β (add_monoid_algebra k G βββ[k] A) := | |
{ to_fun := Ξ» f, { to_fun := Ξ» a, sum a (Ξ» m t, t β’ f (multiplicative.of_add m)), | |
.. (monoid_algebra.lift_magma k f : _)}, | |
inv_fun := Ξ» F, F.to_mul_hom.comp (of_magma k G), | |
.. (monoid_algebra.lift_magma k : (multiplicative G ββ* A) β (_ βββ[k] A)) } | |
end non_unital_non_assoc_algebra | |
/-! #### Algebra structure -/ | |
section algebra | |
local attribute [reducible] add_monoid_algebra | |
/-- `finsupp.single 0` as a `ring_hom` -/ | |
@[simps] def single_zero_ring_hom [semiring k] [add_monoid G] : k β+* add_monoid_algebra k G := | |
{ map_one' := rfl, | |
map_mul' := Ξ» x y, by rw [single_add_hom, single_mul_single, zero_add], | |
..finsupp.single_add_hom 0} | |
/-- If two ring homomorphisms from `add_monoid_algebra k G` are equal on all `single a 1` | |
and `single 0 b`, then they are equal. -/ | |
lemma ring_hom_ext {R} [semiring k] [add_monoid G] [semiring R] | |
{f g : add_monoid_algebra k G β+* R} (hβ : β b, f (single 0 b) = g (single 0 b)) | |
(h_of : β a, f (single a 1) = g (single a 1)) : f = g := | |
@monoid_algebra.ring_hom_ext k (multiplicative G) R _ _ _ _ _ hβ h_of | |
/-- If two ring homomorphisms from `add_monoid_algebra k G` are equal on all `single a 1` | |
and `single 0 b`, then they are equal. | |
See note [partially-applied ext lemmas]. -/ | |
@[ext] lemma ring_hom_ext' {R} [semiring k] [add_monoid G] [semiring R] | |
{f g : add_monoid_algebra k G β+* R} | |
(hβ : f.comp single_zero_ring_hom = g.comp single_zero_ring_hom) | |
(h_of : (f : add_monoid_algebra k G β* R).comp (of k G) = | |
(g : add_monoid_algebra k G β* R).comp (of k G)) : | |
f = g := | |
ring_hom_ext (ring_hom.congr_fun hβ) (monoid_hom.congr_fun h_of) | |
section opposite | |
open finsupp mul_opposite | |
variables [semiring k] | |
/-- The opposite of an `add_monoid_algebra R I` is ring equivalent to | |
the `add_monoid_algebra Rα΅α΅α΅ I` over the opposite ring, taking elements to their opposite. -/ | |
@[simps {simp_rhs := tt}] protected noncomputable def op_ring_equiv [add_comm_monoid G] : | |
(add_monoid_algebra k G)α΅α΅α΅ β+* add_monoid_algebra kα΅α΅α΅ G := | |
{ map_mul' := begin | |
dsimp only [add_equiv.to_fun_eq_coe, βadd_equiv.coe_to_add_monoid_hom], | |
rw add_monoid_hom.map_mul_iff, | |
ext i r i' r' : 6, | |
dsimp, | |
simp only [map_range_single, single_mul_single, βop_mul, add_comm] | |
end, | |
..mul_opposite.op_add_equiv.symm.trans | |
(finsupp.map_range.add_equiv (mul_opposite.op_add_equiv : k β+ kα΅α΅α΅))} | |
@[simp] lemma op_ring_equiv_single [add_comm_monoid G] (r : k) (x : G) : | |
add_monoid_algebra.op_ring_equiv (op (single x r)) = single x (op r) := | |
by simp | |
@[simp] lemma op_ring_equiv_symm_single [add_comm_monoid G] (r : kα΅α΅α΅) (x : Gα΅α΅α΅) : | |
add_monoid_algebra.op_ring_equiv.symm (single x r) = op (single x r.unop) := | |
by simp | |
end opposite | |
/-- | |
The instance `algebra R (add_monoid_algebra k G)` whenever we have `algebra R k`. | |
In particular this provides the instance `algebra k (add_monoid_algebra k G)`. | |
-/ | |
instance [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] : | |
algebra R (add_monoid_algebra k G) := | |
{ smul_def' := Ξ» r a, by { ext, simp [single_zero_mul_apply, algebra.smul_def, pi.smul_apply], }, | |
commutes' := Ξ» r f, by { ext, simp [single_zero_mul_apply, mul_single_zero_apply, | |
algebra.commutes], }, | |
..single_zero_ring_hom.comp (algebra_map R k) } | |
/-- `finsupp.single 0` as a `alg_hom` -/ | |
@[simps] def single_zero_alg_hom [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] : | |
k ββ[R] add_monoid_algebra k G := | |
{ commutes' := Ξ» r, by { ext, simp, refl, }, ..single_zero_ring_hom} | |
@[simp] lemma coe_algebra_map [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] : | |
(algebra_map R (add_monoid_algebra k G) : R β add_monoid_algebra k G) = | |
single 0 β (algebra_map R k) := | |
rfl | |
end algebra | |
section lift | |
variables {k G} [comm_semiring k] [add_monoid G] | |
variables {A : Type uβ} [semiring A] [algebra k A] {B : Type*} [semiring B] [algebra k B] | |
/-- `lift_nc_ring_hom` as a `alg_hom`, for when `f` is an `alg_hom` -/ | |
def lift_nc_alg_hom (f : A ββ[k] B) (g : multiplicative G β* B) | |
(h_comm : β x y, commute (f x) (g y)) : | |
add_monoid_algebra A G ββ[k] B := | |
{ to_fun := lift_nc_ring_hom (f : A β+* B) g h_comm, | |
commutes' := by simp [lift_nc_ring_hom], | |
..(lift_nc_ring_hom (f : A β+* B) g h_comm)} | |
/-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its | |
values on the functions `single a 1`. -/ | |
lemma alg_hom_ext β¦Οβ Οβ : add_monoid_algebra k G ββ[k] Aβ¦ | |
(h : β x, Οβ (single x 1) = Οβ (single x 1)) : Οβ = Οβ := | |
@monoid_algebra.alg_hom_ext k (multiplicative G) _ _ _ _ _ _ _ h | |
/-- See note [partially-applied ext lemmas]. -/ | |
@[ext] lemma alg_hom_ext' β¦Οβ Οβ : add_monoid_algebra k G ββ[k] Aβ¦ | |
(h : (Οβ : add_monoid_algebra k G β* A).comp (of k G) = | |
(Οβ : add_monoid_algebra k G β* A).comp (of k G)) : Οβ = Οβ := | |
alg_hom_ext $ monoid_hom.congr_fun h | |
variables (k G A) | |
/-- Any monoid homomorphism `G β* A` can be lifted to an algebra homomorphism | |
`monoid_algebra k G ββ[k] A`. -/ | |
def lift : (multiplicative G β* A) β (add_monoid_algebra k G ββ[k] A) := | |
{ inv_fun := Ξ» f, (f : add_monoid_algebra k G β* A).comp (of k G), | |
to_fun := Ξ» F, | |
{ to_fun := lift_nc_alg_hom (algebra.of_id k A) F $ Ξ» _ _, algebra.commutes _ _, | |
.. @monoid_algebra.lift k (multiplicative G) _ _ A _ _ F}, | |
.. @monoid_algebra.lift k (multiplicative G) _ _ A _ _ } | |
variables {k G A} | |
lemma lift_apply' (F : multiplicative G β* A) (f : monoid_algebra k G) : | |
lift k G A F f = f.sum (Ξ» a b, (algebra_map k A b) * F (multiplicative.of_add a)) := rfl | |
lemma lift_apply (F : multiplicative G β* A) (f : monoid_algebra k G) : | |
lift k G A F f = f.sum (Ξ» a b, b β’ F (multiplicative.of_add a)) := | |
by simp only [lift_apply', algebra.smul_def] | |
lemma lift_def (F : multiplicative G β* A) : | |
β(lift k G A F) = lift_nc ((algebra_map k A : k β+* A) : k β+ A) F := | |
rfl | |
@[simp] lemma lift_symm_apply (F : add_monoid_algebra k G ββ[k] A) (x : multiplicative G) : | |
(lift k G A).symm F x = F (single x.to_add 1) := rfl | |
lemma lift_of (F : multiplicative G β* A) (x : multiplicative G) : | |
lift k G A F (of k G x) = F x := | |
by rw [of_apply, β lift_symm_apply, equiv.symm_apply_apply] | |
@[simp] lemma lift_single (F : multiplicative G β* A) (a b) : | |
lift k G A F (single a b) = b β’ F (multiplicative.of_add a) := | |
by rw [lift_def, lift_nc_single, algebra.smul_def, ring_hom.coe_add_monoid_hom] | |
lemma lift_unique' (F : add_monoid_algebra k G ββ[k] A) : | |
F = lift k G A ((F : add_monoid_algebra k G β* A).comp (of k G)) := | |
((lift k G A).apply_symm_apply F).symm | |
/-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by | |
its values on `F (single a 1)`. -/ | |
lemma lift_unique (F : add_monoid_algebra k G ββ[k] A) (f : monoid_algebra k G) : | |
F f = f.sum (Ξ» a b, b β’ F (single a 1)) := | |
by conv_lhs { rw lift_unique' F, simp [lift_apply] } | |
lemma alg_hom_ext_iff {Οβ Οβ : add_monoid_algebra k G ββ[k] A} : | |
(β x, Οβ (finsupp.single x 1) = Οβ (finsupp.single x 1)) β Οβ = Οβ := | |
β¨Ξ» h, alg_hom_ext h, by rintro rfl _; reflβ© | |
end lift | |
section | |
local attribute [reducible] add_monoid_algebra | |
universe ui | |
variable {ΞΉ : Type ui} | |
lemma prod_single [comm_semiring k] [add_comm_monoid G] | |
{s : finset ΞΉ} {a : ΞΉ β G} {b : ΞΉ β k} : | |
(β i in s, single (a i) (b i)) = single (β i in s, a i) (β i in s, b i) := | |
finset.cons_induction_on s rfl $ Ξ» a s has ih, by rw [prod_cons has, ih, | |
single_mul_single, sum_cons has, prod_cons has] | |
end | |
lemma map_domain_algebra_map {A H F : Type*} [comm_semiring k] [semiring A] | |
[algebra k A] [add_monoid G] [add_monoid H] [add_monoid_hom_class F G H] (f : F) (r : k) : | |
map_domain f (algebra_map k (add_monoid_algebra A G) r) = | |
algebra_map k (add_monoid_algebra A H) r := | |
by simp only [function.comp_app, map_domain_single, add_monoid_algebra.coe_algebra_map, map_zero] | |
/-- If `f : G β H` is a homomorphism between two additive magmas, then `finsupp.map_domain f` is a | |
non-unital algebra homomorphism between their additive magma algebras. -/ | |
@[simps] | |
def map_domain_non_unital_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A] | |
{G H F : Type*} [has_add G] [has_add H] [add_hom_class F G H] (f : F) : | |
add_monoid_algebra A G βββ[k] add_monoid_algebra A H := | |
{ map_mul' := Ξ» x y, map_domain_mul f x y, | |
map_smul' := Ξ» r x, map_domain_smul r x, | |
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra A G β+ monoid_algebra A H) } | |
/-- If `f : G β H` is an additive homomorphism between two additive monoids, then | |
`finsupp.map_domain f` is an algebra homomorphism between their add monoid algebras. -/ | |
@[simps] def map_domain_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A] | |
[add_monoid G] {H F : Type*} [add_monoid H] [add_monoid_hom_class F G H] (f : F) : | |
add_monoid_algebra A G ββ[k] add_monoid_algebra A H := | |
{ commutes' := map_domain_algebra_map f, | |
..map_domain_ring_hom A f} | |
end add_monoid_algebra | |
variables [comm_semiring R] (k G) | |
/-- The algebra equivalence between `add_monoid_algebra` and `monoid_algebra` in terms of | |
`multiplicative`. -/ | |
def add_monoid_algebra.to_multiplicative_alg_equiv [semiring k] [algebra R k] [add_monoid G] : | |
add_monoid_algebra k G ββ[R] monoid_algebra k (multiplicative G) := | |
{ commutes' := Ξ» r, by simp [add_monoid_algebra.to_multiplicative], | |
..add_monoid_algebra.to_multiplicative k G } | |
/-- The algebra equivalence between `monoid_algebra` and `add_monoid_algebra` in terms of | |
`additive`. -/ | |
def monoid_algebra.to_additive_alg_equiv [semiring k] [algebra R k] [monoid G] : | |
monoid_algebra k G ββ[R] add_monoid_algebra k (additive G) := | |
{ commutes' := Ξ» r, by simp [monoid_algebra.to_additive], | |
..monoid_algebra.to_additive k G } | |