/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Yury G. Kudryashov, Scott Morrison -/ import algebra.big_operators.finsupp import algebra.hom.non_unital_alg import linear_algebra.finsupp /-! # Monoid algebras When the domain of a `finsupp` has a multiplicative or additive structure, we can define a convolution product. To mathematicians this structure is known as the "monoid algebra", i.e. the finite formal linear combinations over a given semiring of elements of the monoid. The "group ring" ℤ[G] or the "group algebra" k[G] are typical uses. In fact the construction of the "monoid algebra" makes sense when `G` is not even a monoid, but merely a magma, i.e., when `G` carries a multiplication which is not required to satisfy any conditions at all. In this case the construction yields a not-necessarily-unital, not-necessarily-associative algebra but it is still adjoint to the forgetful functor from such algebras to magmas, and we prove this as `monoid_algebra.lift_magma`. In this file we define `monoid_algebra k G := G →₀ k`, and `add_monoid_algebra k G` in the same way, and then define the convolution product on these. When the domain is additive, this is used to define polynomials: ``` polynomial α := add_monoid_algebra ℕ α mv_polynomial σ α := add_monoid_algebra (σ →₀ ℕ) α ``` When the domain is multiplicative, e.g. a group, this will be used to define the group ring. ## Implementation note Unfortunately because additive and multiplicative structures both appear in both cases, it doesn't appear to be possible to make much use of `to_additive`, and we just settle for saying everything twice. Similarly, I attempted to just define `add_monoid_algebra k G := monoid_algebra k (multiplicative G)`, but the definitional equality `multiplicative G = G` leaks through everywhere, and seems impossible to use. -/ noncomputable theory open_locale big_operators open finset finsupp universes u₁ u₂ u₃ variables (k : Type u₁) (G : Type u₂) {R : Type*} /-! ### Multiplicative monoids -/ section variables [semiring k] /-- The monoid algebra over a semiring `k` generated by the monoid `G`. It is the type of finite formal `k`-linear combinations of terms of `G`, endowed with the convolution product. -/ @[derive [inhabited, add_comm_monoid]] def monoid_algebra : Type (max u₁ u₂) := G →₀ k instance : has_coe_to_fun (monoid_algebra k G) (λ _, G → k) := finsupp.has_coe_to_fun end namespace monoid_algebra variables {k G} section variables [semiring k] [non_unital_non_assoc_semiring R] /-- A non-commutative version of `monoid_algebra.lift`: given a additive homomorphism `f : k →+ R` and a homomorphism `g : G → R`, returns the additive homomorphism from `monoid_algebra k G` such that `lift_nc f g (single a b) = f b * g a`. If `f` is a ring homomorphism and the range of either `f` or `g` is in center of `R`, then the result is a ring homomorphism. If `R` is a `k`-algebra and `f = algebra_map k R`, then the result is an algebra homomorphism called `monoid_algebra.lift`. -/ def lift_nc (f : k →+ R) (g : G → R) : monoid_algebra k G →+ R := lift_add_hom (λ x : G, (add_monoid_hom.mul_right (g x)).comp f) @[simp] lemma lift_nc_single (f : k →+ R) (g : G → R) (a : G) (b : k) : lift_nc f g (single a b) = f b * g a := lift_add_hom_apply_single _ _ _ end section has_mul variables [semiring k] [has_mul G] /-- The product of `f g : monoid_algebra k G` is the finitely supported function whose value at `a` is the sum of `f x * g y` over all pairs `x, y` such that `x * y = a`. (Think of the group ring of a group.) -/ instance : has_mul (monoid_algebra k G) := ⟨λf g, f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ * a₂) (b₁ * b₂)⟩ lemma mul_def {f g : monoid_algebra k G} : f * g = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ * a₂) (b₁ * b₂)) := rfl instance : non_unital_non_assoc_semiring (monoid_algebra k G) := { zero := 0, mul := (*), add := (+), left_distrib := assume f g h, by simp only [mul_def, sum_add_index, mul_add, mul_zero, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add], right_distrib := assume f g h, by simp only [mul_def, sum_add_index, add_mul, zero_mul, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero, sum_add], zero_mul := assume f, by simp only [mul_def, sum_zero_index], mul_zero := assume f, by simp only [mul_def, sum_zero_index, sum_zero], .. finsupp.add_comm_monoid } variables [semiring R] lemma lift_nc_mul {g_hom : Type*} [mul_hom_class g_hom G R] (f : k →+* R) (g : g_hom) (a b : monoid_algebra k G) (h_comm : ∀ {x y}, y ∈ a.support → commute (f (b x)) (g y)) : lift_nc (f : k →+ R) g (a * b) = lift_nc (f : k →+ R) g a * lift_nc (f : k →+ R) g b := begin conv_rhs { rw [← sum_single a, ← sum_single b] }, simp_rw [mul_def, (lift_nc _ g).map_finsupp_sum, lift_nc_single, finsupp.sum_mul, finsupp.mul_sum], refine finset.sum_congr rfl (λ y hy, finset.sum_congr rfl (λ x hx, _)), simp [mul_assoc, (h_comm hy).left_comm] end end has_mul section semigroup variables [semiring k] [semigroup G] [semiring R] instance : non_unital_semiring (monoid_algebra k G) := { zero := 0, mul := (*), add := (+), mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index, sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add], .. monoid_algebra.non_unital_non_assoc_semiring} end semigroup section has_one variables [non_assoc_semiring R] [semiring k] [has_one G] /-- The unit of the multiplication is `single 1 1`, i.e. the function that is `1` at `1` and zero elsewhere. -/ instance : has_one (monoid_algebra k G) := ⟨single 1 1⟩ lemma one_def : (1 : monoid_algebra k G) = single 1 1 := rfl @[simp] lemma lift_nc_one {g_hom : Type*} [one_hom_class g_hom G R] (f : k →+* R) (g : g_hom) : lift_nc (f : k →+ R) g 1 = 1 := by simp [one_def] end has_one section mul_one_class variables [semiring k] [mul_one_class G] instance : non_assoc_semiring (monoid_algebra k G) := { one := 1, mul := (*), zero := 0, add := (+), nat_cast := λ n, single 1 n, nat_cast_zero := by simp [nat.cast], nat_cast_succ := λ _, by simp [nat.cast]; refl, one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul, single_zero, sum_zero, zero_add, one_mul, sum_single], mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero, single_zero, sum_zero, add_zero, mul_one, sum_single], ..monoid_algebra.non_unital_non_assoc_semiring } lemma nat_cast_def (n : ℕ) : (n : monoid_algebra k G) = single 1 n := rfl end mul_one_class /-! #### Semiring structure -/ section semiring variables [semiring k] [monoid G] instance : semiring (monoid_algebra k G) := { one := 1, mul := (*), zero := 0, add := (+), .. monoid_algebra.non_unital_semiring, .. monoid_algebra.non_assoc_semiring } variables [semiring R] /-- `lift_nc` as a `ring_hom`, for when `f x` and `g y` commute -/ def lift_nc_ring_hom (f : k →+* R) (g : G →* R) (h_comm : ∀ x y, commute (f x) (g y)) : monoid_algebra k G →+* R := { to_fun := lift_nc (f : k →+ R) g, map_one' := lift_nc_one _ _, map_mul' := λ a b, lift_nc_mul _ _ _ _ $ λ _ _ _, h_comm _ _, ..(lift_nc (f : k →+ R) g)} end semiring instance [comm_semiring k] [comm_semigroup G] : non_unital_comm_semiring (monoid_algebra k G) := { mul_comm := assume f g, begin simp only [mul_def, finsupp.sum, mul_comm], rw [finset.sum_comm], simp only [mul_comm] end, .. monoid_algebra.non_unital_semiring } instance [semiring k] [nontrivial k] [nonempty G]: nontrivial (monoid_algebra k G) := finsupp.nontrivial /-! #### Derived instances -/ section derived_instances instance [comm_semiring k] [comm_monoid G] : comm_semiring (monoid_algebra k G) := { .. monoid_algebra.non_unital_comm_semiring, .. monoid_algebra.semiring } instance [semiring k] [subsingleton k] : unique (monoid_algebra k G) := finsupp.unique_of_right instance [ring k] : add_comm_group (monoid_algebra k G) := finsupp.add_comm_group instance [ring k] [has_mul G] : non_unital_non_assoc_ring (monoid_algebra k G) := { .. monoid_algebra.add_comm_group, .. monoid_algebra.non_unital_non_assoc_semiring } instance [ring k] [semigroup G] : non_unital_ring (monoid_algebra k G) := { .. monoid_algebra.add_comm_group, .. monoid_algebra.non_unital_semiring } instance [ring k] [mul_one_class G] : non_assoc_ring (monoid_algebra k G) := { int_cast := λ z, single 1 (z : k), int_cast_of_nat := λ n, by simpa, int_cast_neg_succ_of_nat := λ n, by simpa, .. monoid_algebra.add_comm_group, .. monoid_algebra.non_assoc_semiring } lemma int_cast_def [ring k] [mul_one_class G] (z : ℤ) : (z : monoid_algebra k G) = single 1 z := rfl instance [ring k] [monoid G] : ring (monoid_algebra k G) := { .. monoid_algebra.non_assoc_ring, .. monoid_algebra.semiring } instance [comm_ring k] [comm_semigroup G] : non_unital_comm_ring (monoid_algebra k G) := { .. monoid_algebra.non_unital_comm_semiring, .. monoid_algebra.non_unital_ring } instance [comm_ring k] [comm_monoid G] : comm_ring (monoid_algebra k G) := { .. monoid_algebra.non_unital_comm_ring, .. monoid_algebra.ring } variables {S : Type*} instance [monoid R] [semiring k] [distrib_mul_action R k] : has_smul R (monoid_algebra k G) := finsupp.has_smul instance [monoid R] [semiring k] [distrib_mul_action R k] : distrib_mul_action R (monoid_algebra k G) := finsupp.distrib_mul_action G k instance [semiring R] [semiring k] [module R k] : module R (monoid_algebra k G) := finsupp.module G k instance [monoid R] [semiring k] [distrib_mul_action R k] [has_faithful_smul R k] [nonempty G] : has_faithful_smul R (monoid_algebra k G) := finsupp.has_faithful_smul instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k] [has_smul R S] [is_scalar_tower R S k] : is_scalar_tower R S (monoid_algebra k G) := finsupp.is_scalar_tower G k instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k] [smul_comm_class R S k] : smul_comm_class R S (monoid_algebra k G) := finsupp.smul_comm_class G k instance [monoid R] [semiring k] [distrib_mul_action R k] [distrib_mul_action Rᵐᵒᵖ k] [is_central_scalar R k] : is_central_scalar R (monoid_algebra k G) := finsupp.is_central_scalar G k /-- This is not an instance as it conflicts with `monoid_algebra.distrib_mul_action` when `G = kˣ`. -/ def comap_distrib_mul_action_self [group G] [semiring k] : distrib_mul_action G (monoid_algebra k G) := finsupp.comap_distrib_mul_action end derived_instances section misc_theorems variables [semiring k] local attribute [reducible] monoid_algebra lemma mul_apply [decidable_eq G] [has_mul G] (f g : monoid_algebra k G) (x : G) : (f * g) x = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, if a₁ * a₂ = x then b₁ * b₂ else 0) := begin rw [mul_def], simp only [finsupp.sum_apply, single_apply], end lemma mul_apply_antidiagonal [has_mul G] (f g : monoid_algebra k G) (x : G) (s : finset (G × G)) (hs : ∀ {p : G × G}, p ∈ s ↔ p.1 * p.2 = x) : (f * g) x = ∑ p in s, (f p.1 * g p.2) := let F : G × G → k := λ p, by classical; exact if p.1 * p.2 = x then f p.1 * g p.2 else 0 in calc (f * g) x = (∑ a₁ in f.support, ∑ a₂ in g.support, F (a₁, a₂)) : mul_apply f g x ... = ∑ p in f.support ×ˢ g.support, F p : finset.sum_product.symm ... = ∑ p in (f.support ×ˢ g.support).filter (λ p : G × G, p.1 * p.2 = x), f p.1 * g p.2 : (finset.sum_filter _ _).symm ... = ∑ p in s.filter (λ p : G × G, p.1 ∈ f.support ∧ p.2 ∈ g.support), f p.1 * g p.2 : sum_congr (by { ext, simp only [mem_filter, mem_product, hs, and_comm] }) (λ _ _, rfl) ... = ∑ p in s, f p.1 * g p.2 : sum_subset (filter_subset _ _) $ λ p hps hp, begin simp only [mem_filter, mem_support_iff, not_and, not_not] at hp ⊢, by_cases h1 : f p.1 = 0, { rw [h1, zero_mul] }, { rw [hp hps h1, mul_zero] } end lemma support_mul [has_mul G] [decidable_eq G] (a b : monoid_algebra k G) : (a * b).support ⊆ a.support.bUnion (λa₁, b.support.bUnion $ λa₂, {a₁ * a₂}) := subset.trans support_sum $ bUnion_mono $ assume a₁ _, subset.trans support_sum $ bUnion_mono $ assume a₂ _, support_single_subset @[simp] lemma single_mul_single [has_mul G] {a₁ a₂ : G} {b₁ b₂ : k} : (single a₁ b₁ : monoid_algebra k G) * single a₂ b₂ = single (a₁ * a₂) (b₁ * b₂) := (sum_single_index (by simp only [zero_mul, single_zero, sum_zero])).trans (sum_single_index (by rw [mul_zero, single_zero])) @[simp] lemma single_pow [monoid G] {a : G} {b : k} : ∀ n : ℕ, (single a b : monoid_algebra k G)^n = single (a^n) (b ^ n) | 0 := by { simp only [pow_zero], refl } | (n+1) := by simp only [pow_succ, single_pow n, single_mul_single] section /-- Like `finsupp.map_domain_zero`, but for the `1` we define in this file -/ @[simp] lemma map_domain_one {α : Type*} {β : Type*} {α₂ : Type*} [semiring β] [has_one α] [has_one α₂] {F : Type*} [one_hom_class F α α₂] (f : F) : (map_domain f (1 : monoid_algebra β α) : monoid_algebra β α₂) = (1 : monoid_algebra β α₂) := by simp_rw [one_def, map_domain_single, map_one] /-- Like `finsupp.map_domain_add`, but for the convolutive multiplication we define in this file -/ lemma map_domain_mul {α : Type*} {β : Type*} {α₂ : Type*} [semiring β] [has_mul α] [has_mul α₂] {F : Type*} [mul_hom_class F α α₂] (f : F) (x y : monoid_algebra β α) : (map_domain f (x * y : monoid_algebra β α) : monoid_algebra β α₂) = (map_domain f x * map_domain f y : monoid_algebra β α₂) := begin simp_rw [mul_def, map_domain_sum, map_domain_single, map_mul], rw finsupp.sum_map_domain_index, { congr, ext a b, rw finsupp.sum_map_domain_index, { simp }, { simp [mul_add] } }, { simp }, { simp [add_mul] } end variables (k G) /-- The embedding of a magma into its magma algebra. -/ @[simps] def of_magma [has_mul G] : G →ₙ* (monoid_algebra k G) := { to_fun := λ a, single a 1, map_mul' := λ a b, by simp only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero], } /-- The embedding of a unital magma into its magma algebra. -/ @[simps] def of [mul_one_class G] : G →* monoid_algebra k G := { to_fun := λ a, single a 1, map_one' := rfl, .. of_magma k G } end lemma smul_of [mul_one_class G] (g : G) (r : k) : r • (of k G g) = single g r := by simp lemma of_injective [mul_one_class G] [nontrivial k] : function.injective (of k G) := λ a b h, by simpa using (single_eq_single_iff _ _ _ _).mp h /-- `finsupp.single` as a `monoid_hom` from the product type into the monoid algebra. Note the order of the elements of the product are reversed compared to the arguments of `finsupp.single`. -/ @[simps] def single_hom [mul_one_class G] : k × G →* monoid_algebra k G := { to_fun := λ a, single a.2 a.1, map_one' := rfl, map_mul' := λ a b, single_mul_single.symm } lemma mul_single_apply_aux [has_mul G] (f : monoid_algebra k G) {r : k} {x y z : G} (H : ∀ a, a * x = z ↔ a = y) : (f * single x r) z = f y * r := by classical; exact have A : ∀ a₁ b₁, (single x r).sum (λ a₂ b₂, ite (a₁ * a₂ = z) (b₁ * b₂) 0) = ite (a₁ * x = z) (b₁ * r) 0, from λ a₁ b₁, sum_single_index $ by simp, calc (f * single x r) z = sum f (λ a b, if (a = y) then (b * r) else 0) : by simp only [mul_apply, A, H] ... = if y ∈ f.support then f y * r else 0 : f.support.sum_ite_eq' _ _ ... = f y * r : by split_ifs with h; simp at h; simp [h] lemma mul_single_one_apply [mul_one_class G] (f : monoid_algebra k G) (r : k) (x : G) : (f * single 1 r) x = f x * r := f.mul_single_apply_aux $ λ a, by rw [mul_one] lemma support_mul_single [right_cancel_semigroup G] (f : monoid_algebra k G) (r : k) (hr : ∀ y, y * r = 0 ↔ y = 0) (x : G) : (f * single x r).support = f.support.map (mul_right_embedding x) := begin ext y, simp only [mem_support_iff, mem_map, exists_prop, mul_right_embedding_apply], by_cases H : ∃ a, a * x = y, { rcases H with ⟨a, rfl⟩, rw [mul_single_apply_aux f (λ _, mul_left_inj x)], simp [hr] }, { push_neg at H, classical, simp [mul_apply, H] } end lemma single_mul_apply_aux [has_mul G] (f : monoid_algebra k G) {r : k} {x y z : G} (H : ∀ a, x * a = y ↔ a = z) : (single x r * f) y = r * f z := by classical; exact ( have f.sum (λ a b, ite (x * a = y) (0 * b) 0) = 0, by simp, calc (single x r * f) y = sum f (λ a b, ite (x * a = y) (r * b) 0) : (mul_apply _ _ _).trans $ sum_single_index (by exact this) ... = f.sum (λ a b, ite (a = z) (r * b) 0) : by simp only [H] ... = if z ∈ f.support then (r * f z) else 0 : f.support.sum_ite_eq' _ _ ... = _ : by split_ifs with h; simp at h; simp [h]) lemma single_one_mul_apply [mul_one_class G] (f : monoid_algebra k G) (r : k) (x : G) : (single 1 r * f) x = r * f x := f.single_mul_apply_aux $ λ a, by rw [one_mul] lemma support_single_mul [left_cancel_semigroup G] (f : monoid_algebra k G) (r : k) (hr : ∀ y, r * y = 0 ↔ y = 0) (x : G) : (single x r * f).support = f.support.map (mul_left_embedding x) := begin ext y, simp only [mem_support_iff, mem_map, exists_prop, mul_left_embedding_apply], by_cases H : ∃ a, x * a = y, { rcases H with ⟨a, rfl⟩, rw [single_mul_apply_aux f (λ _, mul_right_inj x)], simp [hr] }, { push_neg at H, classical, simp [mul_apply, H] } end lemma lift_nc_smul [mul_one_class G] {R : Type*} [semiring R] (f : k →+* R) (g : G →* R) (c : k) (φ : monoid_algebra k G) : lift_nc (f : k →+ R) g (c • φ) = f c * lift_nc (f : k →+ R) g φ := begin suffices : (lift_nc ↑f g).comp (smul_add_hom k (monoid_algebra k G) c) = (add_monoid_hom.mul_left (f c)).comp (lift_nc ↑f g), from add_monoid_hom.congr_fun this φ, ext a b, simp [mul_assoc] end end misc_theorems /-! #### Non-unital, non-associative algebra structure -/ section non_unital_non_assoc_algebra variables (k) [monoid R] [semiring k] [distrib_mul_action R k] [has_mul G] instance is_scalar_tower_self [is_scalar_tower R k k] : is_scalar_tower R (monoid_algebra k G) (monoid_algebra k G) := ⟨λ t a b, begin ext m, classical, simp only [mul_apply, finsupp.smul_sum, smul_ite, smul_mul_assoc, sum_smul_index', zero_mul, if_t_t, implies_true_iff, eq_self_iff_true, sum_zero, coe_smul, smul_eq_mul, pi.smul_apply, smul_zero], end⟩ /-- Note that if `k` is a `comm_semiring` then we have `smul_comm_class k k k` and so we can take `R = k` in the below. In other words, if the coefficients are commutative amongst themselves, they also commute with the algebra multiplication. -/ instance smul_comm_class_self [smul_comm_class R k k] : smul_comm_class R (monoid_algebra k G) (monoid_algebra k G) := ⟨λ t a b, begin ext m, simp only [mul_apply, finsupp.sum, finset.smul_sum, smul_ite, mul_smul_comm, sum_smul_index', implies_true_iff, eq_self_iff_true, coe_smul, ite_eq_right_iff, smul_eq_mul, pi.smul_apply, mul_zero, smul_zero], end⟩ instance smul_comm_class_symm_self [smul_comm_class k R k] : smul_comm_class (monoid_algebra k G) R (monoid_algebra k G) := ⟨λ t a b, by { haveI := smul_comm_class.symm k R k, rw ← smul_comm, } ⟩ variables {A : Type u₃} [non_unital_non_assoc_semiring A] /-- A non_unital `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its values on the functions `single a 1`. -/ lemma non_unital_alg_hom_ext [distrib_mul_action k A] {φ₁ φ₂ : monoid_algebra k G →ₙₐ[k] A} (h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ := non_unital_alg_hom.to_distrib_mul_action_hom_injective $ finsupp.distrib_mul_action_hom_ext' $ λ a, distrib_mul_action_hom.ext_ring (h a) /-- See note [partially-applied ext lemmas]. -/ @[ext] lemma non_unital_alg_hom_ext' [distrib_mul_action k A] {φ₁ φ₂ : monoid_algebra k G →ₙₐ[k] A} (h : φ₁.to_mul_hom.comp (of_magma k G) = φ₂.to_mul_hom.comp (of_magma k G)) : φ₁ = φ₂ := non_unital_alg_hom_ext k $ mul_hom.congr_fun h /-- The functor `G ↦ monoid_algebra k G`, from the category of magmas to the category of non-unital, non-associative algebras over `k` is adjoint to the forgetful functor in the other direction. -/ @[simps] def lift_magma [module k A] [is_scalar_tower k A A] [smul_comm_class k A A] : (G →ₙ* A) ≃ (monoid_algebra k G →ₙₐ[k] A) := { to_fun := λ f, { to_fun := λ a, a.sum (λ m t, t • f m), map_smul' := λ t' a, begin rw [finsupp.smul_sum, sum_smul_index'], { simp_rw smul_assoc, }, { intros m, exact zero_smul k (f m), }, end, map_mul' := λ a₁ a₂, begin let g : G → k → A := λ m t, t • f m, have h₁ : ∀ m, g m 0 = 0, { intros, exact zero_smul k (f m), }, have h₂ : ∀ m (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂, { intros, rw ← add_smul, }, simp_rw [finsupp.mul_sum, finsupp.sum_mul, smul_mul_smul, ← f.map_mul, mul_def, sum_comm a₂ a₁, sum_sum_index h₁ h₂, sum_single_index (h₁ _)], end, .. lift_add_hom (λ x, (smul_add_hom k A).flip (f x)) }, inv_fun := λ F, F.to_mul_hom.comp (of_magma k G), left_inv := λ f, by { ext m, simp only [non_unital_alg_hom.coe_mk, of_magma_apply, non_unital_alg_hom.to_mul_hom_eq_coe, sum_single_index, function.comp_app, one_smul, zero_smul, mul_hom.coe_comp, non_unital_alg_hom.coe_to_mul_hom], }, right_inv := λ F, by { ext m, simp only [non_unital_alg_hom.coe_mk, of_magma_apply, non_unital_alg_hom.to_mul_hom_eq_coe, sum_single_index, function.comp_app, one_smul, zero_smul, mul_hom.coe_comp, non_unital_alg_hom.coe_to_mul_hom], }, } end non_unital_non_assoc_algebra /-! #### Algebra structure -/ section algebra local attribute [reducible] monoid_algebra lemma single_one_comm [comm_semiring k] [mul_one_class G] (r : k) (f : monoid_algebra k G) : single 1 r * f = f * single 1 r := by { ext, rw [single_one_mul_apply, mul_single_one_apply, mul_comm] } /-- `finsupp.single 1` as a `ring_hom` -/ @[simps] def single_one_ring_hom [semiring k] [mul_one_class G] : k →+* monoid_algebra k G := { map_one' := rfl, map_mul' := λ x y, by rw [single_add_hom, single_mul_single, one_mul], ..finsupp.single_add_hom 1} /-- If `f : G → H` is a multiplicative homomorphism between two monoids, then `finsupp.map_domain f` is a ring homomorphism between their monoid algebras. -/ @[simps] def map_domain_ring_hom (k : Type*) {H F : Type*} [semiring k] [monoid G] [monoid H] [monoid_hom_class F G H] (f : F) : monoid_algebra k G →+* monoid_algebra k H := { map_one' := map_domain_one f, map_mul' := λ x y, map_domain_mul f x y, ..(finsupp.map_domain.add_monoid_hom f : monoid_algebra k G →+ monoid_algebra k H) } /-- If two ring homomorphisms from `monoid_algebra k G` are equal on all `single a 1` and `single 1 b`, then they are equal. -/ lemma ring_hom_ext {R} [semiring k] [mul_one_class G] [semiring R] {f g : monoid_algebra k G →+* R} (h₁ : ∀ b, f (single 1 b) = g (single 1 b)) (h_of : ∀ a, f (single a 1) = g (single a 1)) : f = g := ring_hom.coe_add_monoid_hom_injective $ add_hom_ext $ λ a b, by rw [← one_mul a, ← mul_one b, ← single_mul_single, f.coe_add_monoid_hom, g.coe_add_monoid_hom, f.map_mul, g.map_mul, h₁, h_of] /-- If two ring homomorphisms from `monoid_algebra k G` are equal on all `single a 1` and `single 1 b`, then they are equal. See note [partially-applied ext lemmas]. -/ @[ext] lemma ring_hom_ext' {R} [semiring k] [mul_one_class G] [semiring R] {f g : monoid_algebra k G →+* R} (h₁ : f.comp single_one_ring_hom = g.comp single_one_ring_hom) (h_of : (f : monoid_algebra k G →* R).comp (of k G) = (g : monoid_algebra k G →* R).comp (of k G)) : f = g := ring_hom_ext (ring_hom.congr_fun h₁) (monoid_hom.congr_fun h_of) /-- The instance `algebra k (monoid_algebra A G)` whenever we have `algebra k A`. In particular this provides the instance `algebra k (monoid_algebra k G)`. -/ instance {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] : algebra k (monoid_algebra A G) := { smul_def' := λ r a, by { ext, simp [single_one_mul_apply, algebra.smul_def, pi.smul_apply], }, commutes' := λ r f, by { ext, simp [single_one_mul_apply, mul_single_one_apply, algebra.commutes], }, ..single_one_ring_hom.comp (algebra_map k A) } /-- `finsupp.single 1` as a `alg_hom` -/ @[simps] def single_one_alg_hom {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] : A →ₐ[k] monoid_algebra A G := { commutes' := λ r, by { ext, simp, refl, }, ..single_one_ring_hom} @[simp] lemma coe_algebra_map {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] : ⇑(algebra_map k (monoid_algebra A G)) = single 1 ∘ (algebra_map k A) := rfl lemma single_eq_algebra_map_mul_of [comm_semiring k] [monoid G] (a : G) (b : k) : single a b = algebra_map k (monoid_algebra k G) b * of k G a := by simp lemma single_algebra_map_eq_algebra_map_mul_of {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] (a : G) (b : k) : single a (algebra_map k A b) = algebra_map k (monoid_algebra A G) b * of A G a := by simp lemma induction_on [semiring k] [monoid G] {p : monoid_algebra k G → Prop} (f : monoid_algebra k G) (hM : ∀ g, p (of k G g)) (hadd : ∀ f g : monoid_algebra k G, p f → p g → p (f + g)) (hsmul : ∀ (r : k) f, p f → p (r • f)) : p f := begin refine finsupp.induction_linear f _ (λ f g hf hg, hadd f g hf hg) (λ g r, _), { simpa using hsmul 0 (of k G 1) (hM 1) }, { convert hsmul r (of k G g) (hM g), simp only [mul_one, smul_single', of_apply] }, end end algebra section lift variables {k G} [comm_semiring k] [monoid G] variables {A : Type u₃} [semiring A] [algebra k A] {B : Type*} [semiring B] [algebra k B] /-- `lift_nc_ring_hom` as a `alg_hom`, for when `f` is an `alg_hom` -/ def lift_nc_alg_hom (f : A →ₐ[k] B) (g : G →* B) (h_comm : ∀ x y, commute (f x) (g y)) : monoid_algebra A G →ₐ[k] B := { to_fun := lift_nc_ring_hom (f : A →+* B) g h_comm, commutes' := by simp [lift_nc_ring_hom], ..(lift_nc_ring_hom (f : A →+* B) g h_comm)} /-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its values on the functions `single a 1`. -/ lemma alg_hom_ext ⦃φ₁ φ₂ : monoid_algebra k G →ₐ[k] A⦄ (h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ := alg_hom.to_linear_map_injective $ finsupp.lhom_ext' $ λ a, linear_map.ext_ring (h a) /-- See note [partially-applied ext lemmas]. -/ @[ext] lemma alg_hom_ext' ⦃φ₁ φ₂ : monoid_algebra k G →ₐ[k] A⦄ (h : (φ₁ : monoid_algebra k G →* A).comp (of k G) = (φ₂ : monoid_algebra k G →* A).comp (of k G)) : φ₁ = φ₂ := alg_hom_ext $ monoid_hom.congr_fun h variables (k G A) /-- Any monoid homomorphism `G →* A` can be lifted to an algebra homomorphism `monoid_algebra k G →ₐ[k] A`. -/ def lift : (G →* A) ≃ (monoid_algebra k G →ₐ[k] A) := { inv_fun := λ f, (f : monoid_algebra k G →* A).comp (of k G), to_fun := λ F, lift_nc_alg_hom (algebra.of_id k A) F $ λ _ _, algebra.commutes _ _, left_inv := λ f, by { ext, simp [lift_nc_alg_hom, lift_nc_ring_hom] }, right_inv := λ F, by { ext, simp [lift_nc_alg_hom, lift_nc_ring_hom] } } variables {k G A} lemma lift_apply' (F : G →* A) (f : monoid_algebra k G) : lift k G A F f = f.sum (λ a b, (algebra_map k A b) * F a) := rfl lemma lift_apply (F : G →* A) (f : monoid_algebra k G) : lift k G A F f = f.sum (λ a b, b • F a) := by simp only [lift_apply', algebra.smul_def] lemma lift_def (F : G →* A) : ⇑(lift k G A F) = lift_nc ((algebra_map k A : k →+* A) : k →+ A) F := rfl @[simp] lemma lift_symm_apply (F : monoid_algebra k G →ₐ[k] A) (x : G) : (lift k G A).symm F x = F (single x 1) := rfl lemma lift_of (F : G →* A) (x) : lift k G A F (of k G x) = F x := by rw [of_apply, ← lift_symm_apply, equiv.symm_apply_apply] @[simp] lemma lift_single (F : G →* A) (a b) : lift k G A F (single a b) = b • F a := by rw [lift_def, lift_nc_single, algebra.smul_def, ring_hom.coe_add_monoid_hom] lemma lift_unique' (F : monoid_algebra k G →ₐ[k] A) : F = lift k G A ((F : monoid_algebra k G →* A).comp (of k G)) := ((lift k G A).apply_symm_apply F).symm /-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by its values on `F (single a 1)`. -/ lemma lift_unique (F : monoid_algebra k G →ₐ[k] A) (f : monoid_algebra k G) : F f = f.sum (λ a b, b • F (single a 1)) := by conv_lhs { rw lift_unique' F, simp [lift_apply] } /-- If `f : G → H` is a homomorphism between two magmas, then `finsupp.map_domain f` is a non-unital algebra homomorphism between their magma algebras. -/ @[simps] def map_domain_non_unital_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A] {G H F : Type*} [has_mul G] [has_mul H] [mul_hom_class F G H] (f : F) : monoid_algebra A G →ₙₐ[k] monoid_algebra A H := { map_mul' := λ x y, map_domain_mul f x y, map_smul' := λ r x, map_domain_smul r x, ..(finsupp.map_domain.add_monoid_hom f : monoid_algebra A G →+ monoid_algebra A H) } lemma map_domain_algebra_map (k A : Type*) {H F : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid H] [monoid_hom_class F G H] (f : F) (r : k) : map_domain f (algebra_map k (monoid_algebra A G) r) = algebra_map k (monoid_algebra A H) r := by simp only [coe_algebra_map, map_domain_single, map_one] /-- If `f : G → H` is a multiplicative homomorphism between two monoids, then `finsupp.map_domain f` is an algebra homomorphism between their monoid algebras. -/ @[simps] def map_domain_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A] {H F : Type*} [monoid H] [monoid_hom_class F G H] (f : F) : monoid_algebra A G →ₐ[k] monoid_algebra A H := { commutes' := map_domain_algebra_map k A f, ..map_domain_ring_hom A f} end lift section local attribute [reducible] monoid_algebra variables (k) /-- When `V` is a `k[G]`-module, multiplication by a group element `g` is a `k`-linear map. -/ def group_smul.linear_map [monoid G] [comm_semiring k] (V : Type u₃) [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V] [is_scalar_tower k (monoid_algebra k G) V] (g : G) : V →ₗ[k] V := { to_fun := λ v, (single g (1 : k) • v : V), map_add' := λ x y, smul_add (single g (1 : k)) x y, map_smul' := λ c x, smul_algebra_smul_comm _ _ _ } @[simp] lemma group_smul.linear_map_apply [monoid G] [comm_semiring k] (V : Type u₃) [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V] [is_scalar_tower k (monoid_algebra k G) V] (g : G) (v : V) : (group_smul.linear_map k V g) v = (single g (1 : k) • v : V) := rfl section variables {k} variables [monoid G] [comm_semiring k] {V W : Type u₃} [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V] [is_scalar_tower k (monoid_algebra k G) V] [add_comm_monoid W] [module k W] [module (monoid_algebra k G) W] [is_scalar_tower k (monoid_algebra k G) W] (f : V →ₗ[k] W) (h : ∀ (g : G) (v : V), f (single g (1 : k) • v : V) = (single g (1 : k) • (f v) : W)) include h /-- Build a `k[G]`-linear map from a `k`-linear map and evidence that it is `G`-equivariant. -/ def equivariant_of_linear_of_comm : V →ₗ[monoid_algebra k G] W := { to_fun := f, map_add' := λ v v', by simp, map_smul' := λ c v, begin apply finsupp.induction c, { simp, }, { intros g r c' nm nz w, dsimp at *, simp only [add_smul, f.map_add, w, add_left_inj, single_eq_algebra_map_mul_of, ← smul_smul], erw [algebra_map_smul (monoid_algebra k G) r, algebra_map_smul (monoid_algebra k G) r, f.map_smul, h g v, of_apply], all_goals { apply_instance } } end, } @[simp] lemma equivariant_of_linear_of_comm_apply (v : V) : (equivariant_of_linear_of_comm f h) v = f v := rfl end end section universe ui variable {ι : Type ui} local attribute [reducible] monoid_algebra lemma prod_single [comm_semiring k] [comm_monoid G] {s : finset ι} {a : ι → G} {b : ι → k} : (∏ i in s, single (a i) (b i)) = single (∏ i in s, a i) (∏ i in s, b i) := finset.cons_induction_on s rfl $ λ a s has ih, by rw [prod_cons has, ih, single_mul_single, prod_cons has, prod_cons has] end section -- We now prove some additional statements that hold for group algebras. variables [semiring k] [group G] local attribute [reducible] monoid_algebra @[simp] lemma mul_single_apply (f : monoid_algebra k G) (r : k) (x y : G) : (f * single x r) y = f (y * x⁻¹) * r := f.mul_single_apply_aux $ λ a, eq_mul_inv_iff_mul_eq.symm @[simp] lemma single_mul_apply (r : k) (x : G) (f : monoid_algebra k G) (y : G) : (single x r * f) y = r * f (x⁻¹ * y) := f.single_mul_apply_aux $ λ z, eq_inv_mul_iff_mul_eq.symm lemma mul_apply_left (f g : monoid_algebra k G) (x : G) : (f * g) x = (f.sum $ λ a b, b * (g (a⁻¹ * x))) := calc (f * g) x = sum f (λ a b, (single a b * g) x) : by rw [← finsupp.sum_apply, ← finsupp.sum_mul, f.sum_single] ... = _ : by simp only [single_mul_apply, finsupp.sum] -- If we'd assumed `comm_semiring`, we could deduce this from `mul_apply_left`. lemma mul_apply_right (f g : monoid_algebra k G) (x : G) : (f * g) x = (g.sum $ λa b, (f (x * a⁻¹)) * b) := calc (f * g) x = sum g (λ a b, (f * single a b) x) : by rw [← finsupp.sum_apply, ← finsupp.mul_sum, g.sum_single] ... = _ : by simp only [mul_single_apply, finsupp.sum] end section span variables [semiring k] [mul_one_class G] /-- An element of `monoid_algebra R M` is in the subalgebra generated by its support. -/ lemma mem_span_support (f : monoid_algebra k G) : f ∈ submodule.span k (of k G '' (f.support : set G)) := by rw [of, monoid_hom.coe_mk, ← finsupp.supported_eq_span_single, finsupp.mem_supported] end span section opposite open finsupp mul_opposite variables [semiring k] /-- The opposite of an `monoid_algebra R I` equivalent as a ring to the `monoid_algebra Rᵐᵒᵖ Iᵐᵒᵖ` over the opposite ring, taking elements to their opposite. -/ @[simps {simp_rhs := tt}] protected noncomputable def op_ring_equiv [monoid G] : (monoid_algebra k G)ᵐᵒᵖ ≃+* monoid_algebra kᵐᵒᵖ Gᵐᵒᵖ := { map_mul' := begin dsimp only [add_equiv.to_fun_eq_coe, ←add_equiv.coe_to_add_monoid_hom], rw add_monoid_hom.map_mul_iff, ext i₁ r₁ i₂ r₂ : 6, simp end, ..op_add_equiv.symm.trans $ (finsupp.map_range.add_equiv (op_add_equiv : k ≃+ kᵐᵒᵖ)).trans $ finsupp.dom_congr op_equiv } @[simp] lemma op_ring_equiv_single [monoid G] (r : k) (x : G) : monoid_algebra.op_ring_equiv (op (single x r)) = single (op x) (op r) := by simp @[simp] lemma op_ring_equiv_symm_single [monoid G] (r : kᵐᵒᵖ) (x : Gᵐᵒᵖ) : monoid_algebra.op_ring_equiv.symm (single x r) = op (single x.unop r.unop) := by simp end opposite section submodule variables {k G} [comm_semiring k] [monoid G] variables {V : Type*} [add_comm_monoid V] variables [module k V] [module (monoid_algebra k G) V] [is_scalar_tower k (monoid_algebra k G) V] /-- A submodule over `k` which is stable under scalar multiplication by elements of `G` is a submodule over `monoid_algebra k G` -/ def submodule_of_smul_mem (W : submodule k V) (h : ∀ (g : G) (v : V), v ∈ W → (of k G g) • v ∈ W) : submodule (monoid_algebra k G) V := { carrier := W, zero_mem' := W.zero_mem', add_mem' := W.add_mem', smul_mem' := begin intros f v hv, rw [←finsupp.sum_single f, finsupp.sum, finset.sum_smul], simp_rw [←smul_of, smul_assoc], exact submodule.sum_smul_mem W _ (λ g _, h g v hv) end } end submodule end monoid_algebra /-! ### Additive monoids -/ section variables [semiring k] /-- The monoid algebra over a semiring `k` generated by the additive monoid `G`. It is the type of finite formal `k`-linear combinations of terms of `G`, endowed with the convolution product. -/ @[derive [inhabited, add_comm_monoid]] def add_monoid_algebra := G →₀ k instance : has_coe_to_fun (add_monoid_algebra k G) (λ _, G → k) := finsupp.has_coe_to_fun end namespace add_monoid_algebra variables {k G} section variables [semiring k] [non_unital_non_assoc_semiring R] /-- A non-commutative version of `add_monoid_algebra.lift`: given a additive homomorphism `f : k →+ R` and a map `g : multiplicative G → R`, returns the additive homomorphism from `add_monoid_algebra k G` such that `lift_nc f g (single a b) = f b * g a`. If `f` is a ring homomorphism and the range of either `f` or `g` is in center of `R`, then the result is a ring homomorphism. If `R` is a `k`-algebra and `f = algebra_map k R`, then the result is an algebra homomorphism called `add_monoid_algebra.lift`. -/ def lift_nc (f : k →+ R) (g : multiplicative G → R) : add_monoid_algebra k G →+ R := lift_add_hom (λ x : G, (add_monoid_hom.mul_right (g $ multiplicative.of_add x)).comp f) @[simp] lemma lift_nc_single (f : k →+ R) (g : multiplicative G → R) (a : G) (b : k) : lift_nc f g (single a b) = f b * g (multiplicative.of_add a) := lift_add_hom_apply_single _ _ _ end section has_mul variables [semiring k] [has_add G] /-- The product of `f g : add_monoid_algebra k G` is the finitely supported function whose value at `a` is the sum of `f x * g y` over all pairs `x, y` such that `x + y = a`. (Think of the product of multivariate polynomials where `α` is the additive monoid of monomial exponents.) -/ instance : has_mul (add_monoid_algebra k G) := ⟨λf g, f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ + a₂) (b₁ * b₂)⟩ lemma mul_def {f g : add_monoid_algebra k G} : f * g = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ + a₂) (b₁ * b₂)) := rfl instance : non_unital_non_assoc_semiring (add_monoid_algebra k G) := { zero := 0, mul := (*), add := (+), left_distrib := assume f g h, by simp only [mul_def, sum_add_index, mul_add, mul_zero, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add], right_distrib := assume f g h, by simp only [mul_def, sum_add_index, add_mul, mul_zero, zero_mul, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero, sum_add], zero_mul := assume f, by simp only [mul_def, sum_zero_index], mul_zero := assume f, by simp only [mul_def, sum_zero_index, sum_zero], nsmul := λ n f, n • f, nsmul_zero' := by { intros, ext, simp [-nsmul_eq_mul, add_smul] }, nsmul_succ' := by { intros, ext, simp [-nsmul_eq_mul, nat.succ_eq_one_add, add_smul] }, .. finsupp.add_comm_monoid } variables [semiring R] lemma lift_nc_mul {g_hom : Type*} [mul_hom_class g_hom (multiplicative G) R] (f : k →+* R) (g : g_hom) (a b : add_monoid_algebra k G) (h_comm : ∀ {x y}, y ∈ a.support → commute (f (b x)) (g $ multiplicative.of_add y)) : lift_nc (f : k →+ R) g (a * b) = lift_nc (f : k →+ R) g a * lift_nc (f : k →+ R) g b := (monoid_algebra.lift_nc_mul f g _ _ @h_comm : _) end has_mul section has_one variables [semiring k] [has_zero G] [non_assoc_semiring R] /-- The unit of the multiplication is `single 1 1`, i.e. the function that is `1` at `0` and zero elsewhere. -/ instance : has_one (add_monoid_algebra k G) := ⟨single 0 1⟩ lemma one_def : (1 : add_monoid_algebra k G) = single 0 1 := rfl @[simp] lemma lift_nc_one {g_hom : Type*} [one_hom_class g_hom (multiplicative G) R] (f : k →+* R) (g : g_hom) : lift_nc (f : k →+ R) g 1 = 1 := (monoid_algebra.lift_nc_one f g : _) end has_one section semigroup variables [semiring k] [add_semigroup G] instance : non_unital_semiring (add_monoid_algebra k G) := { zero := 0, mul := (*), add := (+), mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index, sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add], .. add_monoid_algebra.non_unital_non_assoc_semiring } end semigroup section mul_one_class variables [semiring k] [add_zero_class G] instance : non_assoc_semiring (add_monoid_algebra k G) := { one := 1, mul := (*), zero := 0, add := (+), nat_cast := λ n, single 0 n, nat_cast_zero := by simp [nat.cast], nat_cast_succ := λ _, by simp [nat.cast]; refl, one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul, single_zero, sum_zero, zero_add, one_mul, sum_single], mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero, single_zero, sum_zero, add_zero, mul_one, sum_single], .. add_monoid_algebra.non_unital_non_assoc_semiring } lemma nat_cast_def (n : ℕ) : (n : add_monoid_algebra k G) = single 0 n := rfl end mul_one_class /-! #### Semiring structure -/ section semiring instance {R : Type*} [monoid R] [semiring k] [distrib_mul_action R k] : has_smul R (add_monoid_algebra k G) := finsupp.has_smul variables [semiring k] [add_monoid G] instance : semiring (add_monoid_algebra k G) := { one := 1, mul := (*), zero := 0, add := (+), .. add_monoid_algebra.non_unital_semiring, .. add_monoid_algebra.non_assoc_semiring, } variables [semiring R] /-- `lift_nc` as a `ring_hom`, for when `f` and `g` commute -/ def lift_nc_ring_hom (f : k →+* R) (g : multiplicative G →* R) (h_comm : ∀ x y, commute (f x) (g y)) : add_monoid_algebra k G →+* R := { to_fun := lift_nc (f : k →+ R) g, map_one' := lift_nc_one _ _, map_mul' := λ a b, lift_nc_mul _ _ _ _ $ λ _ _ _, h_comm _ _, ..(lift_nc (f : k →+ R) g)} end semiring instance [comm_semiring k] [add_comm_semigroup G] : non_unital_comm_semiring (add_monoid_algebra k G) := { mul_comm := @mul_comm (monoid_algebra k $ multiplicative G) _, .. add_monoid_algebra.non_unital_semiring } instance [semiring k] [nontrivial k] [nonempty G] : nontrivial (add_monoid_algebra k G) := finsupp.nontrivial /-! #### Derived instances -/ section derived_instances instance [comm_semiring k] [add_comm_monoid G] : comm_semiring (add_monoid_algebra k G) := { .. add_monoid_algebra.non_unital_comm_semiring, .. add_monoid_algebra.semiring } instance [semiring k] [subsingleton k] : unique (add_monoid_algebra k G) := finsupp.unique_of_right instance [ring k] : add_comm_group (add_monoid_algebra k G) := finsupp.add_comm_group instance [ring k] [has_add G] : non_unital_non_assoc_ring (add_monoid_algebra k G) := { .. add_monoid_algebra.add_comm_group, .. add_monoid_algebra.non_unital_non_assoc_semiring } instance [ring k] [add_semigroup G] : non_unital_ring (add_monoid_algebra k G) := { .. add_monoid_algebra.add_comm_group, .. add_monoid_algebra.non_unital_semiring } instance [ring k] [add_zero_class G] : non_assoc_ring (add_monoid_algebra k G) := { int_cast := λ z, single 0 (z : k), int_cast_of_nat := λ n, by simpa, int_cast_neg_succ_of_nat := λ n, by simpa, .. add_monoid_algebra.add_comm_group, .. add_monoid_algebra.non_assoc_semiring } lemma int_cast_def [ring k] [add_zero_class G] (z : ℤ) : (z : add_monoid_algebra k G) = single 0 z := rfl instance [ring k] [add_monoid G] : ring (add_monoid_algebra k G) := { .. add_monoid_algebra.non_assoc_ring, .. add_monoid_algebra.semiring } instance [comm_ring k] [add_comm_semigroup G] : non_unital_comm_ring (add_monoid_algebra k G) := { .. add_monoid_algebra.non_unital_comm_semiring, .. add_monoid_algebra.non_unital_ring } instance [comm_ring k] [add_comm_monoid G] : comm_ring (add_monoid_algebra k G) := { .. add_monoid_algebra.non_unital_comm_ring, .. add_monoid_algebra.ring } variables {S : Type*} instance [monoid R] [semiring k] [distrib_mul_action R k] : distrib_mul_action R (add_monoid_algebra k G) := finsupp.distrib_mul_action G k instance [monoid R] [semiring k] [distrib_mul_action R k] [has_faithful_smul R k] [nonempty G] : has_faithful_smul R (add_monoid_algebra k G) := finsupp.has_faithful_smul instance [semiring R] [semiring k] [module R k] : module R (add_monoid_algebra k G) := finsupp.module G k instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k] [has_smul R S] [is_scalar_tower R S k] : is_scalar_tower R S (add_monoid_algebra k G) := finsupp.is_scalar_tower G k instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k] [smul_comm_class R S k] : smul_comm_class R S (add_monoid_algebra k G) := finsupp.smul_comm_class G k instance [monoid R] [semiring k] [distrib_mul_action R k] [distrib_mul_action Rᵐᵒᵖ k] [is_central_scalar R k] : is_central_scalar R (add_monoid_algebra k G) := finsupp.is_central_scalar G k /-! It is hard to state the equivalent of `distrib_mul_action G (add_monoid_algebra k G)` because we've never discussed actions of additive groups. -/ end derived_instances section misc_theorems variables [semiring k] lemma mul_apply [decidable_eq G] [has_add G] (f g : add_monoid_algebra k G) (x : G) : (f * g) x = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, if a₁ + a₂ = x then b₁ * b₂ else 0) := @monoid_algebra.mul_apply k (multiplicative G) _ _ _ _ _ _ lemma mul_apply_antidiagonal [has_add G] (f g : add_monoid_algebra k G) (x : G) (s : finset (G × G)) (hs : ∀ {p : G × G}, p ∈ s ↔ p.1 + p.2 = x) : (f * g) x = ∑ p in s, (f p.1 * g p.2) := @monoid_algebra.mul_apply_antidiagonal k (multiplicative G) _ _ _ _ _ s @hs lemma support_mul [decidable_eq G] [has_add G] (a b : add_monoid_algebra k G) : (a * b).support ⊆ a.support.bUnion (λa₁, b.support.bUnion $ λa₂, {a₁ + a₂}) := @monoid_algebra.support_mul k (multiplicative G) _ _ _ _ _ lemma single_mul_single [has_add G] {a₁ a₂ : G} {b₁ b₂ : k} : (single a₁ b₁ * single a₂ b₂ : add_monoid_algebra k G) = single (a₁ + a₂) (b₁ * b₂) := @monoid_algebra.single_mul_single k (multiplicative G) _ _ _ _ _ _ -- This should be a `@[simp]` lemma, but the simp_nf linter times out if we add this. -- Probably the correct fix is to make a `[add_]monoid_algebra.single` with the correct type, -- instead of relying on `finsupp.single`. lemma single_pow [add_monoid G] {a : G} {b : k} : ∀ n : ℕ, ((single a b)^n : add_monoid_algebra k G) = single (n • a) (b ^ n) | 0 := by { simp only [pow_zero, zero_nsmul], refl } | (n+1) := by rw [pow_succ, pow_succ, single_pow n, single_mul_single, add_comm, add_nsmul, one_nsmul] /-- Like `finsupp.map_domain_zero`, but for the `1` we define in this file -/ @[simp] lemma map_domain_one {α : Type*} {β : Type*} {α₂ : Type*} [semiring β] [has_zero α] [has_zero α₂] {F : Type*} [zero_hom_class F α α₂] (f : F) : (map_domain f (1 : add_monoid_algebra β α) : add_monoid_algebra β α₂) = (1 : add_monoid_algebra β α₂) := by simp_rw [one_def, map_domain_single, map_zero] /-- Like `finsupp.map_domain_add`, but for the convolutive multiplication we define in this file -/ lemma map_domain_mul {α : Type*} {β : Type*} {α₂ : Type*} [semiring β] [has_add α] [has_add α₂] {F : Type*} [add_hom_class F α α₂] (f : F) (x y : add_monoid_algebra β α) : (map_domain f (x * y : add_monoid_algebra β α) : add_monoid_algebra β α₂) = (map_domain f x * map_domain f y : add_monoid_algebra β α₂) := begin simp_rw [mul_def, map_domain_sum, map_domain_single, map_add], rw finsupp.sum_map_domain_index, { congr, ext a b, rw finsupp.sum_map_domain_index, { simp }, { simp [mul_add] } }, { simp }, { simp [add_mul] } end section variables (k G) /-- The embedding of an additive magma into its additive magma algebra. -/ @[simps] def of_magma [has_add G] : multiplicative G →ₙ* add_monoid_algebra k G := { to_fun := λ a, single a 1, map_mul' := λ a b, by simpa only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero], } /-- Embedding of a magma with zero into its magma algebra. -/ def of [add_zero_class G] : multiplicative G →* add_monoid_algebra k G := { to_fun := λ a, single a 1, map_one' := rfl, .. of_magma k G } /-- Embedding of a magma with zero `G`, into its magma algebra, having `G` as source. -/ def of' : G → add_monoid_algebra k G := λ a, single a 1 end @[simp] lemma of_apply [add_zero_class G] (a : multiplicative G) : of k G a = single a.to_add 1 := rfl @[simp] lemma of'_apply (a : G) : of' k G a = single a 1 := rfl lemma of'_eq_of [add_zero_class G] (a : G) : of' k G a = of k G a := rfl lemma of_injective [nontrivial k] [add_zero_class G] : function.injective (of k G) := λ a b h, by simpa using (single_eq_single_iff _ _ _ _).mp h /-- `finsupp.single` as a `monoid_hom` from the product type into the additive monoid algebra. Note the order of the elements of the product are reversed compared to the arguments of `finsupp.single`. -/ @[simps] def single_hom [add_zero_class G] : k × multiplicative G →* add_monoid_algebra k G := { to_fun := λ a, single a.2.to_add a.1, map_one' := rfl, map_mul' := λ a b, single_mul_single.symm } lemma mul_single_apply_aux [has_add G] (f : add_monoid_algebra k G) (r : k) (x y z : G) (H : ∀ a, a + x = z ↔ a = y) : (f * single x r) z = f y * r := @monoid_algebra.mul_single_apply_aux k (multiplicative G) _ _ _ _ _ _ _ H lemma mul_single_zero_apply [add_zero_class G] (f : add_monoid_algebra k G) (r : k) (x : G) : (f * single 0 r) x = f x * r := f.mul_single_apply_aux r _ _ _ $ λ a, by rw [add_zero] lemma single_mul_apply_aux [has_add G] (f : add_monoid_algebra k G) (r : k) (x y z : G) (H : ∀ a, x + a = y ↔ a = z) : (single x r * f : add_monoid_algebra k G) y = r * f z := @monoid_algebra.single_mul_apply_aux k (multiplicative G) _ _ _ _ _ _ _ H lemma single_zero_mul_apply [add_zero_class G] (f : add_monoid_algebra k G) (r : k) (x : G) : (single 0 r * f : add_monoid_algebra k G) x = r * f x := f.single_mul_apply_aux r _ _ _ $ λ a, by rw [zero_add] lemma mul_single_apply [add_group G] (f : add_monoid_algebra k G) (r : k) (x y : G) : (f * single x r) y = f (y - x) * r := (sub_eq_add_neg y x).symm ▸ @monoid_algebra.mul_single_apply k (multiplicative G) _ _ _ _ _ _ lemma single_mul_apply [add_group G] (r : k) (x : G) (f : add_monoid_algebra k G) (y : G) : (single x r * f : add_monoid_algebra k G) y = r * f (- x + y) := @monoid_algebra.single_mul_apply k (multiplicative G) _ _ _ _ _ _ lemma support_mul_single [add_right_cancel_semigroup G] (f : add_monoid_algebra k G) (r : k) (hr : ∀ y, y * r = 0 ↔ y = 0) (x : G) : (f * single x r : add_monoid_algebra k G).support = f.support.map (add_right_embedding x) := @monoid_algebra.support_mul_single k (multiplicative G) _ _ _ _ hr _ lemma support_single_mul [add_left_cancel_semigroup G] (f : add_monoid_algebra k G) (r : k) (hr : ∀ y, r * y = 0 ↔ y = 0) (x : G) : (single x r * f : add_monoid_algebra k G).support = f.support.map (add_left_embedding x) := @monoid_algebra.support_single_mul k (multiplicative G) _ _ _ _ hr _ lemma lift_nc_smul {R : Type*} [add_zero_class G] [semiring R] (f : k →+* R) (g : multiplicative G →* R) (c : k) (φ : monoid_algebra k G) : lift_nc (f : k →+ R) g (c • φ) = f c * lift_nc (f : k →+ R) g φ := @monoid_algebra.lift_nc_smul k (multiplicative G) _ _ _ _ f g c φ lemma induction_on [add_monoid G] {p : add_monoid_algebra k G → Prop} (f : add_monoid_algebra k G) (hM : ∀ g, p (of k G (multiplicative.of_add g))) (hadd : ∀ f g : add_monoid_algebra k G, p f → p g → p (f + g)) (hsmul : ∀ (r : k) f, p f → p (r • f)) : p f := begin refine finsupp.induction_linear f _ (λ f g hf hg, hadd f g hf hg) (λ g r, _), { simpa using hsmul 0 (of k G (multiplicative.of_add 0)) (hM 0) }, { convert hsmul r (of k G (multiplicative.of_add g)) (hM g), simp only [mul_one, to_add_of_add, smul_single', of_apply] }, end /-- If `f : G → H` is an additive homomorphism between two additive monoids, then `finsupp.map_domain f` is a ring homomorphism between their add monoid algebras. -/ @[simps] def map_domain_ring_hom (k : Type*) [semiring k] {H F : Type*} [add_monoid G] [add_monoid H] [add_monoid_hom_class F G H] (f : F) : add_monoid_algebra k G →+* add_monoid_algebra k H := { map_one' := map_domain_one f, map_mul' := λ x y, map_domain_mul f x y, ..(finsupp.map_domain.add_monoid_hom f : monoid_algebra k G →+ monoid_algebra k H) } end misc_theorems section span variables [semiring k] /-- An element of `add_monoid_algebra R M` is in the submodule generated by its support. -/ lemma mem_span_support [add_zero_class G] (f : add_monoid_algebra k G) : f ∈ submodule.span k (of k G '' (f.support : set G)) := by rw [of, monoid_hom.coe_mk, ← finsupp.supported_eq_span_single, finsupp.mem_supported] /-- An element of `add_monoid_algebra R M` is in the subalgebra generated by its support, using unbundled inclusion. -/ lemma mem_span_support' (f : add_monoid_algebra k G) : f ∈ submodule.span k (of' k G '' (f.support : set G)) := by rw [of', ← finsupp.supported_eq_span_single, finsupp.mem_supported] end span end add_monoid_algebra /-! #### Conversions between `add_monoid_algebra` and `monoid_algebra` We have not defined `add_monoid_algebra k G = monoid_algebra k (multiplicative G)` because historically this caused problems; since the changes that have made `nsmul` definitional, this would be possible, but for now we just contruct the ring isomorphisms using `ring_equiv.refl _`. -/ /-- The equivalence between `add_monoid_algebra` and `monoid_algebra` in terms of `multiplicative` -/ protected def add_monoid_algebra.to_multiplicative [semiring k] [has_add G] : add_monoid_algebra k G ≃+* monoid_algebra k (multiplicative G) := { to_fun := equiv_map_domain multiplicative.of_add, map_mul' := λ x y, begin repeat {rw equiv_map_domain_eq_map_domain}, dsimp [multiplicative.of_add], convert monoid_algebra.map_domain_mul (mul_hom.id (multiplicative G)) _ _, end, ..finsupp.dom_congr multiplicative.of_add } /-- The equivalence between `monoid_algebra` and `add_monoid_algebra` in terms of `additive` -/ protected def monoid_algebra.to_additive [semiring k] [has_mul G] : monoid_algebra k G ≃+* add_monoid_algebra k (additive G) := { to_fun := equiv_map_domain additive.of_mul, map_mul' := λ x y, begin repeat {rw equiv_map_domain_eq_map_domain}, dsimp [additive.of_mul], convert monoid_algebra.map_domain_mul (mul_hom.id G) _ _, end, ..finsupp.dom_congr additive.of_mul } namespace add_monoid_algebra variables {k G} /-! #### Non-unital, non-associative algebra structure -/ section non_unital_non_assoc_algebra variables (k) [monoid R] [semiring k] [distrib_mul_action R k] [has_add G] instance is_scalar_tower_self [is_scalar_tower R k k] : is_scalar_tower R (add_monoid_algebra k G) (add_monoid_algebra k G) := @monoid_algebra.is_scalar_tower_self k (multiplicative G) R _ _ _ _ _ /-- Note that if `k` is a `comm_semiring` then we have `smul_comm_class k k k` and so we can take `R = k` in the below. In other words, if the coefficients are commutative amongst themselves, they also commute with the algebra multiplication. -/ instance smul_comm_class_self [smul_comm_class R k k] : smul_comm_class R (add_monoid_algebra k G) (add_monoid_algebra k G) := @monoid_algebra.smul_comm_class_self k (multiplicative G) R _ _ _ _ _ instance smul_comm_class_symm_self [smul_comm_class k R k] : smul_comm_class (add_monoid_algebra k G) R (add_monoid_algebra k G) := @monoid_algebra.smul_comm_class_symm_self k (multiplicative G) R _ _ _ _ _ variables {A : Type u₃} [non_unital_non_assoc_semiring A] /-- A non_unital `k`-algebra homomorphism from `add_monoid_algebra k G` is uniquely defined by its values on the functions `single a 1`. -/ lemma non_unital_alg_hom_ext [distrib_mul_action k A] {φ₁ φ₂ : add_monoid_algebra k G →ₙₐ[k] A} (h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ := @monoid_algebra.non_unital_alg_hom_ext k (multiplicative G) _ _ _ _ _ φ₁ φ₂ h /-- See note [partially-applied ext lemmas]. -/ @[ext] lemma non_unital_alg_hom_ext' [distrib_mul_action k A] {φ₁ φ₂ : add_monoid_algebra k G →ₙₐ[k] A} (h : φ₁.to_mul_hom.comp (of_magma k G) = φ₂.to_mul_hom.comp (of_magma k G)) : φ₁ = φ₂ := @monoid_algebra.non_unital_alg_hom_ext' k (multiplicative G) _ _ _ _ _ φ₁ φ₂ h /-- The functor `G ↦ add_monoid_algebra k G`, from the category of magmas to the category of non-unital, non-associative algebras over `k` is adjoint to the forgetful functor in the other direction. -/ @[simps] def lift_magma [module k A] [is_scalar_tower k A A] [smul_comm_class k A A] : (multiplicative G →ₙ* A) ≃ (add_monoid_algebra k G →ₙₐ[k] A) := { to_fun := λ f, { to_fun := λ a, sum a (λ m t, t • f (multiplicative.of_add m)), .. (monoid_algebra.lift_magma k f : _)}, inv_fun := λ F, F.to_mul_hom.comp (of_magma k G), .. (monoid_algebra.lift_magma k : (multiplicative G →ₙ* A) ≃ (_ →ₙₐ[k] A)) } end non_unital_non_assoc_algebra /-! #### Algebra structure -/ section algebra local attribute [reducible] add_monoid_algebra /-- `finsupp.single 0` as a `ring_hom` -/ @[simps] def single_zero_ring_hom [semiring k] [add_monoid G] : k →+* add_monoid_algebra k G := { map_one' := rfl, map_mul' := λ x y, by rw [single_add_hom, single_mul_single, zero_add], ..finsupp.single_add_hom 0} /-- If two ring homomorphisms from `add_monoid_algebra k G` are equal on all `single a 1` and `single 0 b`, then they are equal. -/ lemma ring_hom_ext {R} [semiring k] [add_monoid G] [semiring R] {f g : add_monoid_algebra k G →+* R} (h₀ : ∀ b, f (single 0 b) = g (single 0 b)) (h_of : ∀ a, f (single a 1) = g (single a 1)) : f = g := @monoid_algebra.ring_hom_ext k (multiplicative G) R _ _ _ _ _ h₀ h_of /-- If two ring homomorphisms from `add_monoid_algebra k G` are equal on all `single a 1` and `single 0 b`, then they are equal. See note [partially-applied ext lemmas]. -/ @[ext] lemma ring_hom_ext' {R} [semiring k] [add_monoid G] [semiring R] {f g : add_monoid_algebra k G →+* R} (h₁ : f.comp single_zero_ring_hom = g.comp single_zero_ring_hom) (h_of : (f : add_monoid_algebra k G →* R).comp (of k G) = (g : add_monoid_algebra k G →* R).comp (of k G)) : f = g := ring_hom_ext (ring_hom.congr_fun h₁) (monoid_hom.congr_fun h_of) section opposite open finsupp mul_opposite variables [semiring k] /-- The opposite of an `add_monoid_algebra R I` is ring equivalent to the `add_monoid_algebra Rᵐᵒᵖ I` over the opposite ring, taking elements to their opposite. -/ @[simps {simp_rhs := tt}] protected noncomputable def op_ring_equiv [add_comm_monoid G] : (add_monoid_algebra k G)ᵐᵒᵖ ≃+* add_monoid_algebra kᵐᵒᵖ G := { map_mul' := begin dsimp only [add_equiv.to_fun_eq_coe, ←add_equiv.coe_to_add_monoid_hom], rw add_monoid_hom.map_mul_iff, ext i r i' r' : 6, dsimp, simp only [map_range_single, single_mul_single, ←op_mul, add_comm] end, ..mul_opposite.op_add_equiv.symm.trans (finsupp.map_range.add_equiv (mul_opposite.op_add_equiv : k ≃+ kᵐᵒᵖ))} @[simp] lemma op_ring_equiv_single [add_comm_monoid G] (r : k) (x : G) : add_monoid_algebra.op_ring_equiv (op (single x r)) = single x (op r) := by simp @[simp] lemma op_ring_equiv_symm_single [add_comm_monoid G] (r : kᵐᵒᵖ) (x : Gᵐᵒᵖ) : add_monoid_algebra.op_ring_equiv.symm (single x r) = op (single x r.unop) := by simp end opposite /-- The instance `algebra R (add_monoid_algebra k G)` whenever we have `algebra R k`. In particular this provides the instance `algebra k (add_monoid_algebra k G)`. -/ instance [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] : algebra R (add_monoid_algebra k G) := { smul_def' := λ r a, by { ext, simp [single_zero_mul_apply, algebra.smul_def, pi.smul_apply], }, commutes' := λ r f, by { ext, simp [single_zero_mul_apply, mul_single_zero_apply, algebra.commutes], }, ..single_zero_ring_hom.comp (algebra_map R k) } /-- `finsupp.single 0` as a `alg_hom` -/ @[simps] def single_zero_alg_hom [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] : k →ₐ[R] add_monoid_algebra k G := { commutes' := λ r, by { ext, simp, refl, }, ..single_zero_ring_hom} @[simp] lemma coe_algebra_map [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] : (algebra_map R (add_monoid_algebra k G) : R → add_monoid_algebra k G) = single 0 ∘ (algebra_map R k) := rfl end algebra section lift variables {k G} [comm_semiring k] [add_monoid G] variables {A : Type u₃} [semiring A] [algebra k A] {B : Type*} [semiring B] [algebra k B] /-- `lift_nc_ring_hom` as a `alg_hom`, for when `f` is an `alg_hom` -/ def lift_nc_alg_hom (f : A →ₐ[k] B) (g : multiplicative G →* B) (h_comm : ∀ x y, commute (f x) (g y)) : add_monoid_algebra A G →ₐ[k] B := { to_fun := lift_nc_ring_hom (f : A →+* B) g h_comm, commutes' := by simp [lift_nc_ring_hom], ..(lift_nc_ring_hom (f : A →+* B) g h_comm)} /-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its values on the functions `single a 1`. -/ lemma alg_hom_ext ⦃φ₁ φ₂ : add_monoid_algebra k G →ₐ[k] A⦄ (h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ := @monoid_algebra.alg_hom_ext k (multiplicative G) _ _ _ _ _ _ _ h /-- See note [partially-applied ext lemmas]. -/ @[ext] lemma alg_hom_ext' ⦃φ₁ φ₂ : add_monoid_algebra k G →ₐ[k] A⦄ (h : (φ₁ : add_monoid_algebra k G →* A).comp (of k G) = (φ₂ : add_monoid_algebra k G →* A).comp (of k G)) : φ₁ = φ₂ := alg_hom_ext $ monoid_hom.congr_fun h variables (k G A) /-- Any monoid homomorphism `G →* A` can be lifted to an algebra homomorphism `monoid_algebra k G →ₐ[k] A`. -/ def lift : (multiplicative G →* A) ≃ (add_monoid_algebra k G →ₐ[k] A) := { inv_fun := λ f, (f : add_monoid_algebra k G →* A).comp (of k G), to_fun := λ F, { to_fun := lift_nc_alg_hom (algebra.of_id k A) F $ λ _ _, algebra.commutes _ _, .. @monoid_algebra.lift k (multiplicative G) _ _ A _ _ F}, .. @monoid_algebra.lift k (multiplicative G) _ _ A _ _ } variables {k G A} lemma lift_apply' (F : multiplicative G →* A) (f : monoid_algebra k G) : lift k G A F f = f.sum (λ a b, (algebra_map k A b) * F (multiplicative.of_add a)) := rfl lemma lift_apply (F : multiplicative G →* A) (f : monoid_algebra k G) : lift k G A F f = f.sum (λ a b, b • F (multiplicative.of_add a)) := by simp only [lift_apply', algebra.smul_def] lemma lift_def (F : multiplicative G →* A) : ⇑(lift k G A F) = lift_nc ((algebra_map k A : k →+* A) : k →+ A) F := rfl @[simp] lemma lift_symm_apply (F : add_monoid_algebra k G →ₐ[k] A) (x : multiplicative G) : (lift k G A).symm F x = F (single x.to_add 1) := rfl lemma lift_of (F : multiplicative G →* A) (x : multiplicative G) : lift k G A F (of k G x) = F x := by rw [of_apply, ← lift_symm_apply, equiv.symm_apply_apply] @[simp] lemma lift_single (F : multiplicative G →* A) (a b) : lift k G A F (single a b) = b • F (multiplicative.of_add a) := by rw [lift_def, lift_nc_single, algebra.smul_def, ring_hom.coe_add_monoid_hom] lemma lift_unique' (F : add_monoid_algebra k G →ₐ[k] A) : F = lift k G A ((F : add_monoid_algebra k G →* A).comp (of k G)) := ((lift k G A).apply_symm_apply F).symm /-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by its values on `F (single a 1)`. -/ lemma lift_unique (F : add_monoid_algebra k G →ₐ[k] A) (f : monoid_algebra k G) : F f = f.sum (λ a b, b • F (single a 1)) := by conv_lhs { rw lift_unique' F, simp [lift_apply] } lemma alg_hom_ext_iff {φ₁ φ₂ : add_monoid_algebra k G →ₐ[k] A} : (∀ x, φ₁ (finsupp.single x 1) = φ₂ (finsupp.single x 1)) ↔ φ₁ = φ₂ := ⟨λ h, alg_hom_ext h, by rintro rfl _; refl⟩ end lift section local attribute [reducible] add_monoid_algebra universe ui variable {ι : Type ui} lemma prod_single [comm_semiring k] [add_comm_monoid G] {s : finset ι} {a : ι → G} {b : ι → k} : (∏ i in s, single (a i) (b i)) = single (∑ i in s, a i) (∏ i in s, b i) := finset.cons_induction_on s rfl $ λ a s has ih, by rw [prod_cons has, ih, single_mul_single, sum_cons has, prod_cons has] end lemma map_domain_algebra_map {A H F : Type*} [comm_semiring k] [semiring A] [algebra k A] [add_monoid G] [add_monoid H] [add_monoid_hom_class F G H] (f : F) (r : k) : map_domain f (algebra_map k (add_monoid_algebra A G) r) = algebra_map k (add_monoid_algebra A H) r := by simp only [function.comp_app, map_domain_single, add_monoid_algebra.coe_algebra_map, map_zero] /-- If `f : G → H` is a homomorphism between two additive magmas, then `finsupp.map_domain f` is a non-unital algebra homomorphism between their additive magma algebras. -/ @[simps] def map_domain_non_unital_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A] {G H F : Type*} [has_add G] [has_add H] [add_hom_class F G H] (f : F) : add_monoid_algebra A G →ₙₐ[k] add_monoid_algebra A H := { map_mul' := λ x y, map_domain_mul f x y, map_smul' := λ r x, map_domain_smul r x, ..(finsupp.map_domain.add_monoid_hom f : monoid_algebra A G →+ monoid_algebra A H) } /-- If `f : G → H` is an additive homomorphism between two additive monoids, then `finsupp.map_domain f` is an algebra homomorphism between their add monoid algebras. -/ @[simps] def map_domain_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A] [add_monoid G] {H F : Type*} [add_monoid H] [add_monoid_hom_class F G H] (f : F) : add_monoid_algebra A G →ₐ[k] add_monoid_algebra A H := { commutes' := map_domain_algebra_map f, ..map_domain_ring_hom A f} end add_monoid_algebra variables [comm_semiring R] (k G) /-- The algebra equivalence between `add_monoid_algebra` and `monoid_algebra` in terms of `multiplicative`. -/ def add_monoid_algebra.to_multiplicative_alg_equiv [semiring k] [algebra R k] [add_monoid G] : add_monoid_algebra k G ≃ₐ[R] monoid_algebra k (multiplicative G) := { commutes' := λ r, by simp [add_monoid_algebra.to_multiplicative], ..add_monoid_algebra.to_multiplicative k G } /-- The algebra equivalence between `monoid_algebra` and `add_monoid_algebra` in terms of `additive`. -/ def monoid_algebra.to_additive_alg_equiv [semiring k] [algebra R k] [monoid G] : monoid_algebra k G ≃ₐ[R] add_monoid_algebra k (additive G) := { commutes' := λ r, by simp [monoid_algebra.to_additive], ..monoid_algebra.to_additive k G }