Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Pierre-Alexandre Bazin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Pierre-Alexandre Bazin | |
-/ | |
import algebra.direct_sum.module | |
import linear_algebra.isomorphisms | |
import group_theory.torsion | |
import ring_theory.coprime.ideal | |
import ring_theory.finiteness | |
/-! | |
# Torsion submodules | |
## Main definitions | |
* `torsion_of R M x` : the torsion ideal of `x`, containing all `a` such that `a • x = 0`. | |
* `submodule.torsion_by R M a` : the `a`-torsion submodule, containing all elements `x` of `M` such | |
that `a • x = 0`. | |
* `submodule.torsion_by_set R M s` : the submodule containing all elements `x` of `M` such that | |
`a • x = 0` for all `a` in `s`. | |
* `submodule.torsion' R M S` : the `S`-torsion submodule, containing all elements `x` of `M` such | |
that `a • x = 0` for some `a` in `S`. | |
* `submodule.torsion R M` : the torsion submoule, containing all elements `x` of `M` such that | |
`a • x = 0` for some non-zero-divisor `a` in `R`. | |
* `module.is_torsion_by R M a` : the property that defines a `a`-torsion module. Similarly, | |
`is_torsion_by_set`, `is_torsion'` and `is_torsion`. | |
* `module.is_torsion_by_set.module` : Creates a `R ⧸ I`-module from a `R`-module that | |
`is_torsion_by_set R _ I`. | |
## Main statements | |
* `quot_torsion_of_equiv_span_singleton` : isomorphism between the span of an element of `M` and | |
the quotient by its torsion ideal. | |
* `torsion' R M S` and `torsion R M` are submodules. | |
* `torsion_by_set_eq_torsion_by_span` : torsion by a set is torsion by the ideal generated by it. | |
* `submodule.torsion_by_is_torsion_by` : the `a`-torsion submodule is a `a`-torsion module. | |
Similar lemmas for `torsion'` and `torsion`. | |
* `submodule.torsion_by_is_internal` : a `∏ i, p i`-torsion module is the internal direct sum of its | |
`p i`-torsion submodules when the `p i` are pairwise coprime. A more general version with coprime | |
ideals is `submodule.torsion_by_set_is_internal`. | |
* `submodule.no_zero_smul_divisors_iff_torsion_bot` : a module over a domain has | |
`no_zero_smul_divisors` (that is, there is no non-zero `a`, `x` such that `a • x = 0`) | |
iff its torsion submodule is trivial. | |
* `submodule.quotient_torsion.torsion_eq_bot` : quotienting by the torsion submodule makes the | |
torsion submodule of the new module trivial. If `R` is a domain, we can derive an instance | |
`submodule.quotient_torsion.no_zero_smul_divisors : no_zero_smul_divisors R (M ⧸ torsion R M)`. | |
## Notation | |
* The notions are defined for a `comm_semiring R` and a `module R M`. Some additional hypotheses on | |
`R` and `M` are required by some lemmas. | |
* The letters `a`, `b`, ... are used for scalars (in `R`), while `x`, `y`, ... are used for vectors | |
(in `M`). | |
## Tags | |
Torsion, submodule, module, quotient | |
-/ | |
namespace ideal | |
section torsion_of | |
variables (R M : Type*) [semiring R] [add_comm_monoid M] [module R M] | |
/--The torsion ideal of `x`, containing all `a` such that `a • x = 0`.-/ | |
@[simps] def torsion_of (x : M) : ideal R := (linear_map.to_span_singleton R M x).ker | |
@[simp] lemma torsion_of_zero : torsion_of R M (0 : M) = ⊤ := by simp [torsion_of] | |
variables {R M} | |
@[simp] lemma mem_torsion_of_iff (x : M) (a : R) : a ∈ torsion_of R M x ↔ a • x = 0 := iff.rfl | |
variables (R) | |
@[simp] lemma torsion_of_eq_top_iff (m : M) : torsion_of R M m = ⊤ ↔ m = 0 := | |
begin | |
refine ⟨λ h, _, λ h, by simp [h]⟩, | |
rw [← one_smul R m, ← mem_torsion_of_iff m (1 : R), h], | |
exact submodule.mem_top, | |
end | |
@[simp] lemma torsion_of_eq_bot_iff_of_no_zero_smul_divisors | |
[nontrivial R] [no_zero_smul_divisors R M] (m : M) : | |
torsion_of R M m = ⊥ ↔ m ≠ 0 := | |
begin | |
refine ⟨λ h contra, _, λ h, (submodule.eq_bot_iff _).mpr $ λ r hr, _⟩, | |
{ rw [contra, torsion_of_zero] at h, | |
exact bot_ne_top.symm h, }, | |
{ rw [mem_torsion_of_iff, smul_eq_zero] at hr, | |
tauto, }, | |
end | |
/-- See also `complete_lattice.independent.linear_independent` which provides the same conclusion | |
but requires the stronger hypothesis `no_zero_smul_divisors R M`. -/ | |
lemma complete_lattice.independent.linear_independent' {ι R M : Type*} {v : ι → M} | |
[ring R] [add_comm_group M] [module R M] | |
(hv : complete_lattice.independent $ λ i, (R ∙ v i)) | |
(h_ne_zero : ∀ i, ideal.torsion_of R M (v i) = ⊥) : | |
linear_independent R v := | |
begin | |
refine linear_independent_iff_not_smul_mem_span.mpr (λ i r hi, _), | |
replace hv := complete_lattice.independent_def.mp hv i, | |
simp only [supr_subtype', ← submodule.span_range_eq_supr, disjoint_iff] at hv, | |
have : r • v i ∈ ⊥, | |
{ rw [← hv, submodule.mem_inf], | |
refine ⟨submodule.mem_span_singleton.mpr ⟨r, rfl⟩, _⟩, | |
convert hi, | |
ext, | |
simp, }, | |
rw [← submodule.mem_bot R, ← h_ne_zero i], | |
simpa using this, | |
end | |
end torsion_of | |
section | |
variables (R M : Type*) [ring R] [add_comm_group M] [module R M] | |
/--The span of `x` in `M` is isomorphic to `R` quotiented by the torsion ideal of `x`.-/ | |
noncomputable def quot_torsion_of_equiv_span_singleton (x : M) : | |
(R ⧸ torsion_of R M x) ≃ₗ[R] (R ∙ x) := | |
(linear_map.to_span_singleton R M x).quot_ker_equiv_range.trans $ | |
linear_equiv.of_eq _ _ (linear_map.span_singleton_eq_range R M x).symm | |
variables {R M} | |
@[simp] lemma quot_torsion_of_equiv_span_singleton_apply_mk (x : M) (a : R) : | |
quot_torsion_of_equiv_span_singleton R M x (submodule.quotient.mk a) = | |
a • ⟨x, submodule.mem_span_singleton_self x⟩ := rfl | |
end | |
end ideal | |
open_locale non_zero_divisors | |
section defs | |
variables (R M : Type*) [comm_semiring R] [add_comm_monoid M] [module R M] | |
namespace submodule | |
/-- The `a`-torsion submodule for `a` in `R`, containing all elements `x` of `M` such that | |
`a • x = 0`. -/ | |
@[simps] def torsion_by (a : R) : submodule R M := (distrib_mul_action.to_linear_map _ _ a).ker | |
/-- The submodule containing all elements `x` of `M` such that `a • x = 0` for all `a` in `s`. -/ | |
@[simps] def torsion_by_set (s : set R) : submodule R M := Inf (torsion_by R M '' s) | |
/-- The `S`-torsion submodule, containing all elements `x` of `M` such that `a • x = 0` for some | |
`a` in `S`. -/ | |
@[simps] def torsion' (S : Type*) | |
[comm_monoid S] [distrib_mul_action S M] [smul_comm_class S R M] : | |
submodule R M := | |
{ carrier := { x | ∃ a : S, a • x = 0 }, | |
zero_mem' := ⟨1, smul_zero _⟩, | |
add_mem' := λ x y ⟨a, hx⟩ ⟨b, hy⟩, | |
⟨b * a, | |
by rw [smul_add, mul_smul, mul_comm, mul_smul, hx, hy, smul_zero, smul_zero, add_zero]⟩, | |
smul_mem' := λ a x ⟨b, h⟩, ⟨b, by rw [smul_comm, h, smul_zero]⟩ } | |
/-- The torsion submodule, containing all elements `x` of `M` such that `a • x = 0` for some | |
non-zero-divisor `a` in `R`. -/ | |
@[reducible] def torsion := torsion' R M R⁰ | |
end submodule | |
namespace module | |
/-- A `a`-torsion module is a module where every element is `a`-torsion. -/ | |
@[reducible] def is_torsion_by (a : R) := ∀ ⦃x : M⦄, a • x = 0 | |
/-- A module where every element is `a`-torsion for all `a` in `s`. -/ | |
@[reducible] def is_torsion_by_set (s : set R) := ∀ ⦃x : M⦄ ⦃a : s⦄, (a : R) • x = 0 | |
/-- A `S`-torsion module is a module where every element is `a`-torsion for some `a` in `S`. -/ | |
@[reducible] def is_torsion' (S : Type*) [has_smul S M] := ∀ ⦃x : M⦄, ∃ a : S, a • x = 0 | |
/-- A torsion module is a module where every element is `a`-torsion for some non-zero-divisor `a`. | |
-/ | |
@[reducible] def is_torsion := ∀ ⦃x : M⦄, ∃ a : R⁰, a • x = 0 | |
end module | |
end defs | |
variables {R M : Type*} | |
section | |
variables [comm_semiring R] [add_comm_monoid M] [module R M] (s : set R) (a : R) | |
namespace submodule | |
@[simp] lemma smul_torsion_by (x : torsion_by R M a) : a • x = 0 := subtype.ext x.prop | |
@[simp] lemma smul_coe_torsion_by (x : torsion_by R M a) : a • (x : M) = 0 := x.prop | |
@[simp] lemma mem_torsion_by_iff (x : M) : x ∈ torsion_by R M a ↔ a • x = 0 := iff.rfl | |
@[simp] lemma mem_torsion_by_set_iff (x : M) : | |
x ∈ torsion_by_set R M s ↔ ∀ a : s, (a : R) • x = 0 := | |
begin | |
refine ⟨λ h ⟨a, ha⟩, mem_Inf.mp h _ (set.mem_image_of_mem _ ha), λ h, mem_Inf.mpr _⟩, | |
rintro _ ⟨a, ha, rfl⟩, exact h ⟨a, ha⟩ | |
end | |
@[simp] lemma torsion_by_singleton_eq : torsion_by_set R M {a} = torsion_by R M a := | |
begin | |
ext x, | |
simp only [mem_torsion_by_set_iff, set_coe.forall, subtype.coe_mk, set.mem_singleton_iff, | |
forall_eq, mem_torsion_by_iff] | |
end | |
lemma torsion_by_set_le_torsion_by_set_of_subset {s t : set R} (st : s ⊆ t) : | |
torsion_by_set R M t ≤ torsion_by_set R M s := | |
Inf_le_Inf $ λ _ ⟨a, ha, h⟩, ⟨a, st ha, h⟩ | |
/-- Torsion by a set is torsion by the ideal generated by it. -/ | |
lemma torsion_by_set_eq_torsion_by_span : | |
torsion_by_set R M s = torsion_by_set R M (ideal.span s) := | |
begin | |
refine le_antisymm (λ x hx, _) (torsion_by_set_le_torsion_by_set_of_subset subset_span), | |
rw mem_torsion_by_set_iff at hx ⊢, | |
suffices : ideal.span s ≤ ideal.torsion_of R M x, | |
{ rintro ⟨a, ha⟩, exact this ha }, | |
rw ideal.span_le, exact λ a ha, hx ⟨a, ha⟩ | |
end | |
lemma torsion_by_span_singleton_eq : torsion_by_set R M (R ∙ a) = torsion_by R M a := | |
((torsion_by_set_eq_torsion_by_span _).symm.trans $ torsion_by_singleton_eq _) | |
lemma torsion_by_le_torsion_by_of_dvd (a b : R) (dvd : a ∣ b) : | |
torsion_by R M a ≤ torsion_by R M b := | |
begin | |
rw [← torsion_by_span_singleton_eq, ← torsion_by_singleton_eq], | |
apply torsion_by_set_le_torsion_by_set_of_subset, | |
rintro c (rfl : c = b), exact ideal.mem_span_singleton.mpr dvd | |
end | |
@[simp] lemma torsion_by_one : torsion_by R M 1 = ⊥ := | |
eq_bot_iff.mpr (λ _ h, by { rw [mem_torsion_by_iff, one_smul] at h, exact h }) | |
@[simp] lemma torsion_by_univ : torsion_by_set R M set.univ = ⊥ := | |
by { rw [eq_bot_iff, ← torsion_by_one, ← torsion_by_singleton_eq], | |
exact torsion_by_set_le_torsion_by_set_of_subset (λ _ _, trivial) } | |
end submodule | |
open submodule | |
namespace module | |
@[simp] lemma is_torsion_by_singleton_iff : is_torsion_by_set R M {a} ↔ is_torsion_by R M a := | |
begin | |
refine ⟨λ h x, @h _ ⟨_, set.mem_singleton _⟩, λ h x, _⟩, | |
rintro ⟨b, rfl : b = a⟩, exact @h _ | |
end | |
lemma is_torsion_by_set_iff_torsion_by_set_eq_top : | |
is_torsion_by_set R M s ↔ submodule.torsion_by_set R M s = ⊤ := | |
⟨λ h, eq_top_iff.mpr (λ _ _, (mem_torsion_by_set_iff _ _).mpr $ @h _), | |
λ h x, by { rw [← mem_torsion_by_set_iff, h], trivial }⟩ | |
/-- A `a`-torsion module is a module whose `a`-torsion submodule is the full space. -/ | |
lemma is_torsion_by_iff_torsion_by_eq_top : is_torsion_by R M a ↔ torsion_by R M a = ⊤ := | |
by rw [← torsion_by_singleton_eq, ← is_torsion_by_singleton_iff, | |
is_torsion_by_set_iff_torsion_by_set_eq_top] | |
lemma is_torsion_by_set_iff_is_torsion_by_span : | |
is_torsion_by_set R M s ↔ is_torsion_by_set R M (ideal.span s) := | |
by rw [is_torsion_by_set_iff_torsion_by_set_eq_top, is_torsion_by_set_iff_torsion_by_set_eq_top, | |
torsion_by_set_eq_torsion_by_span] | |
lemma is_torsion_by_span_singleton_iff : is_torsion_by_set R M (R ∙ a) ↔ is_torsion_by R M a := | |
((is_torsion_by_set_iff_is_torsion_by_span _).symm.trans $ is_torsion_by_singleton_iff _) | |
end module | |
namespace submodule | |
open module | |
lemma torsion_by_set_is_torsion_by_set : is_torsion_by_set R (torsion_by_set R M s) s := | |
λ ⟨x, hx⟩ a, subtype.ext $ (mem_torsion_by_set_iff _ _).mp hx a | |
/-- The `a`-torsion submodule is a `a`-torsion module. -/ | |
lemma torsion_by_is_torsion_by : is_torsion_by R (torsion_by R M a) a := λ _, smul_torsion_by _ _ | |
@[simp] lemma torsion_by_torsion_by_eq_top : torsion_by R (torsion_by R M a) a = ⊤ := | |
(is_torsion_by_iff_torsion_by_eq_top a).mp $ torsion_by_is_torsion_by a | |
@[simp] lemma torsion_by_set_torsion_by_set_eq_top : | |
torsion_by_set R (torsion_by_set R M s) s = ⊤ := | |
(is_torsion_by_set_iff_torsion_by_set_eq_top s).mp $ torsion_by_set_is_torsion_by_set s | |
variables (R M) | |
lemma torsion_gc : @galois_connection (submodule R M) (ideal R)ᵒᵈ _ _ | |
annihilator (λ I, torsion_by_set R M $ I.of_dual) := | |
λ A I, ⟨λ h x hx, (mem_torsion_by_set_iff _ _).mpr $ λ ⟨a, ha⟩, mem_annihilator.mp (h ha) x hx, | |
λ h a ha, mem_annihilator.mpr $ λ x hx, (mem_torsion_by_set_iff _ _).mp (h hx) ⟨a, ha⟩⟩ | |
variables {R M} | |
section coprime | |
open_locale big_operators | |
variables {ι : Type*} {p : ι → ideal R} {S : finset ι} | |
variables (hp : (S : set ι).pairwise $ λ i j, p i ⊔ p j = ⊤) | |
include hp | |
lemma supr_torsion_by_ideal_eq_torsion_by_infi : | |
(⨆ i ∈ S, torsion_by_set R M $ p i) = torsion_by_set R M ↑(⨅ i ∈ S, p i) := | |
begin | |
cases S.eq_empty_or_nonempty with h h, | |
{ rw h, convert supr_emptyset, convert torsion_by_univ, convert top_coe, exact infi_emptyset }, | |
apply le_antisymm, | |
{ apply supr_le _, intro i, apply supr_le _, intro is, | |
apply torsion_by_set_le_torsion_by_set_of_subset, | |
exact (infi_le (λ i, ⨅ (H : i ∈ S), p i) i).trans (infi_le _ is), }, | |
{ intros x hx, | |
rw mem_supr_finset_iff_exists_sum, | |
obtain ⟨μ, hμ⟩ := (mem_supr_finset_iff_exists_sum _ _).mp | |
((ideal.eq_top_iff_one _).mp $ (ideal.supr_infi_eq_top_iff_pairwise h _).mpr hp), | |
refine ⟨λ i, ⟨(μ i : R) • x, _⟩, _⟩, | |
{ rw mem_torsion_by_set_iff at hx ⊢, | |
rintro ⟨a, ha⟩, rw smul_smul, | |
suffices : a * μ i ∈ ⨅ i ∈ S, p i, from hx ⟨_, this⟩, | |
rw mem_infi, intro j, rw mem_infi, intro hj, | |
by_cases ij : j = i, | |
{ rw ij, exact ideal.mul_mem_right _ _ ha }, | |
{ have := coe_mem (μ i), simp only [mem_infi] at this, | |
exact ideal.mul_mem_left _ _ (this j hj ij) } }, | |
{ simp_rw coe_mk, rw [← finset.sum_smul, hμ, one_smul] } } | |
end | |
lemma sup_indep_torsion_by_ideal : S.sup_indep (λ i, torsion_by_set R M $ p i) := | |
λ T hT i hi hiT, begin | |
rw [disjoint_iff, finset.sup_eq_supr, | |
supr_torsion_by_ideal_eq_torsion_by_infi $ λ i hi j hj ij, hp (hT hi) (hT hj) ij], | |
have := @galois_connection.u_inf _ _ (order_dual.to_dual _) (order_dual.to_dual _) _ _ _ _ | |
(torsion_gc R M), dsimp at this ⊢, | |
rw [← this, ideal.sup_infi_eq_top, top_coe, torsion_by_univ], | |
intros j hj, apply hp hi (hT hj), rintro rfl, exact hiT hj | |
end | |
omit hp | |
variables {q : ι → R} (hq : (S : set ι).pairwise $ is_coprime on q) | |
include hq | |
lemma supr_torsion_by_eq_torsion_by_prod : | |
(⨆ i ∈ S, torsion_by R M $ q i) = torsion_by R M (∏ i in S, q i) := | |
begin | |
rw [← torsion_by_span_singleton_eq, ideal.submodule_span_eq, | |
← ideal.finset_inf_span_singleton _ _ hq, finset.inf_eq_infi, | |
← supr_torsion_by_ideal_eq_torsion_by_infi], | |
{ congr, ext : 1, congr, ext : 1, exact (torsion_by_span_singleton_eq _).symm }, | |
{ exact λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime _ _).mpr (hq hi hj ij), } | |
end | |
lemma sup_indep_torsion_by : S.sup_indep (λ i, torsion_by R M $ q i) := | |
begin | |
convert sup_indep_torsion_by_ideal | |
(λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime (q i) _).mpr $ hq hi hj ij), | |
ext : 1, exact (torsion_by_span_singleton_eq _).symm, | |
end | |
end coprime | |
end submodule | |
end | |
section needs_group | |
variables [comm_ring R] [add_comm_group M] [module R M] | |
namespace submodule | |
open_locale big_operators | |
variables {ι : Type*} [decidable_eq ι] {S : finset ι} | |
/--If the `p i` are pairwise coprime, a `⨅ i, p i`-torsion module is the internal direct sum of | |
its `p i`-torsion submodules.-/ | |
lemma torsion_by_set_is_internal {p : ι → ideal R} | |
(hp : (S : set ι).pairwise $ λ i j, p i ⊔ p j = ⊤) | |
(hM : module.is_torsion_by_set R M (⨅ i ∈ S, p i : ideal R)) : | |
direct_sum.is_internal (λ i : S, torsion_by_set R M $ p i) := | |
direct_sum.is_internal_submodule_of_independent_of_supr_eq_top | |
(complete_lattice.independent_iff_sup_indep.mpr $ sup_indep_torsion_by_ideal hp) | |
((supr_subtype'' ↑S $ λ i, torsion_by_set R M $ p i).trans $ | |
(supr_torsion_by_ideal_eq_torsion_by_infi hp).trans $ | |
(module.is_torsion_by_set_iff_torsion_by_set_eq_top _).mp hM) | |
/--If the `q i` are pairwise coprime, a `∏ i, q i`-torsion module is the internal direct sum of | |
its `q i`-torsion submodules.-/ | |
lemma torsion_by_is_internal {q : ι → R} (hq : (S : set ι).pairwise $ is_coprime on q) | |
(hM : module.is_torsion_by R M $ ∏ i in S, q i) : | |
direct_sum.is_internal (λ i : S, torsion_by R M $ q i) := | |
begin | |
rw [← module.is_torsion_by_span_singleton_iff, ideal.submodule_span_eq, | |
← ideal.finset_inf_span_singleton _ _ hq, finset.inf_eq_infi] at hM, | |
convert torsion_by_set_is_internal | |
(λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime (q i) _).mpr $ hq hi hj ij) hM, | |
ext : 1, exact (torsion_by_span_singleton_eq _).symm, | |
end | |
end submodule | |
namespace module | |
variables {I : ideal R} (hM : is_torsion_by_set R M I) | |
include hM | |
/-- can't be an instance because hM can't be inferred -/ | |
def is_torsion_by_set.has_smul : has_smul (R ⧸ I) M := | |
{ smul := λ b x, quotient.lift_on' b (• x) $ λ b₁ b₂ h, begin | |
show b₁ • x = b₂ • x, | |
have : (-b₁ + b₂) • x = 0 := @hM x ⟨_, quotient_add_group.left_rel_apply.mp h⟩, | |
rw [add_smul, neg_smul, neg_add_eq_zero] at this, | |
exact this | |
end } | |
@[simp] lemma is_torsion_by_set.mk_smul (b : R) (x : M) : | |
by haveI := hM.has_smul; exact ideal.quotient.mk I b • x = b • x := rfl | |
/-- A `(R ⧸ I)`-module is a `R`-module which `is_torsion_by_set R M I`. -/ | |
def is_torsion_by_set.module : module (R ⧸ I) M := | |
@function.surjective.module_left _ _ _ _ _ _ _ hM.has_smul | |
_ ideal.quotient.mk_surjective (is_torsion_by_set.mk_smul hM) | |
instance is_torsion_by_set.is_scalar_tower {S : Type*} [has_smul S R] [has_smul S M] | |
[is_scalar_tower S R M] [is_scalar_tower S R R] : | |
@@is_scalar_tower S (R ⧸ I) M _ (is_torsion_by_set.module hM).to_has_smul _ := | |
{ smul_assoc := λ b d x, quotient.induction_on' d $ λ c, (smul_assoc b c x : _) } | |
omit hM | |
instance : module (R ⧸ I) (M ⧸ I • (⊤ : submodule R M)) := | |
is_torsion_by_set.module (λ x r, begin | |
induction x using quotient.induction_on, | |
refine (submodule.quotient.mk_eq_zero _).mpr (submodule.smul_mem_smul r.prop _), | |
trivial, | |
end) | |
end module | |
namespace submodule | |
instance (I : ideal R) : module (R ⧸ I) (torsion_by_set R M I) := | |
module.is_torsion_by_set.module $ torsion_by_set_is_torsion_by_set I | |
@[simp] lemma torsion_by_set.mk_smul (I : ideal R) (b : R) (x : torsion_by_set R M I) : | |
ideal.quotient.mk I b • x = b • x := rfl | |
instance (I : ideal R) {S : Type*} [has_smul S R] [has_smul S M] | |
[is_scalar_tower S R M] [is_scalar_tower S R R] : | |
is_scalar_tower S (R ⧸ I) (torsion_by_set R M I) := | |
infer_instance | |
/-- The `a`-torsion submodule as a `(R ⧸ R∙a)`-module. -/ | |
instance (a : R) : module (R ⧸ R ∙ a) (torsion_by R M a) := | |
module.is_torsion_by_set.module $ | |
(module.is_torsion_by_span_singleton_iff a).mpr $ torsion_by_is_torsion_by a | |
@[simp] lemma torsion_by.mk_smul (a b : R) (x : torsion_by R M a) : | |
ideal.quotient.mk (R ∙ a) b • x = b • x := rfl | |
instance (a : R) {S : Type*} [has_smul S R] [has_smul S M] | |
[is_scalar_tower S R M] [is_scalar_tower S R R] : | |
is_scalar_tower S (R ⧸ R ∙ a) (torsion_by R M a) := | |
infer_instance | |
end submodule | |
end needs_group | |
namespace submodule | |
section torsion' | |
open module | |
variables [comm_semiring R] [add_comm_monoid M] [module R M] | |
variables (S : Type*) [comm_monoid S] [distrib_mul_action S M] [smul_comm_class S R M] | |
@[simp] lemma mem_torsion'_iff (x : M) : x ∈ torsion' R M S ↔ ∃ a : S, a • x = 0 := iff.rfl | |
@[simp] lemma mem_torsion_iff (x : M) : x ∈ torsion R M ↔ ∃ a : R⁰, a • x = 0 := iff.rfl | |
@[simps] instance : has_smul S (torsion' R M S) := | |
⟨λ s x, ⟨s • x, by { obtain ⟨x, a, h⟩ := x, use a, dsimp, rw [smul_comm, h, smul_zero] }⟩⟩ | |
instance : distrib_mul_action S (torsion' R M S) := subtype.coe_injective.distrib_mul_action | |
((torsion' R M S).subtype).to_add_monoid_hom (λ (c : S) x, rfl) | |
instance : smul_comm_class S R (torsion' R M S) := ⟨λ s a x, subtype.ext $ smul_comm _ _ _⟩ | |
/-- A `S`-torsion module is a module whose `S`-torsion submodule is the full space. -/ | |
lemma is_torsion'_iff_torsion'_eq_top : is_torsion' M S ↔ torsion' R M S = ⊤ := | |
⟨λ h, eq_top_iff.mpr (λ _ _, @h _), λ h x, by { rw [← @mem_torsion'_iff R, h], trivial }⟩ | |
/-- The `S`-torsion submodule is a `S`-torsion module. -/ | |
lemma torsion'_is_torsion' : is_torsion' (torsion' R M S) S := λ ⟨x, ⟨a, h⟩⟩, ⟨a, subtype.ext h⟩ | |
@[simp] lemma torsion'_torsion'_eq_top : torsion' R (torsion' R M S) S = ⊤ := | |
(is_torsion'_iff_torsion'_eq_top S).mp $ torsion'_is_torsion' S | |
/-- The torsion submodule of the torsion submodule (viewed as a module) is the full | |
torsion module. -/ | |
@[simp] lemma torsion_torsion_eq_top : torsion R (torsion R M) = ⊤ := torsion'_torsion'_eq_top R⁰ | |
/-- The torsion submodule is always a torsion module. -/ | |
lemma torsion_is_torsion : module.is_torsion R (torsion R M) := torsion'_is_torsion' R⁰ | |
end torsion' | |
section torsion | |
variables [comm_semiring R] [add_comm_monoid M] [module R M] | |
open_locale big_operators | |
lemma is_torsion_by_ideal_of_finite_of_is_torsion [module.finite R M] (hM : module.is_torsion R M) : | |
∃ I : ideal R, (I : set R) ∩ R⁰ ≠ ∅ ∧ module.is_torsion_by_set R M I := | |
begin | |
cases (module.finite_def.mp infer_instance : (⊤ : submodule R M).fg) with S h, | |
refine ⟨∏ x in S, ideal.torsion_of R M x, _, _⟩, | |
{ rw set.ne_empty_iff_nonempty, | |
refine ⟨_, _, (∏ x in S, (@hM x).some : R⁰).2⟩, | |
rw [subtype.val_eq_coe, submonoid.coe_finset_prod], | |
apply ideal.prod_mem_prod, | |
exact λ x _, (@hM x).some_spec }, | |
{ rw [module.is_torsion_by_set_iff_torsion_by_set_eq_top, eq_top_iff, ← h, span_le], | |
intros x hx, apply torsion_by_set_le_torsion_by_set_of_subset, | |
{ apply ideal.le_of_dvd, exact finset.dvd_prod_of_mem _ hx }, | |
{ rw mem_torsion_by_set_iff, rintro ⟨a, ha⟩, exact ha } } | |
end | |
variables [no_zero_divisors R] [nontrivial R] | |
lemma coe_torsion_eq_annihilator_ne_bot : | |
(torsion R M : set M) = { x : M | (R ∙ x).annihilator ≠ ⊥ } := | |
begin | |
ext x, simp_rw [submodule.ne_bot_iff, mem_annihilator, mem_span_singleton], | |
exact ⟨λ ⟨a, hax⟩, ⟨a, λ _ ⟨b, hb⟩, by rw [← hb, smul_comm, ← submonoid.smul_def, hax, smul_zero], | |
non_zero_divisors.coe_ne_zero _⟩, | |
λ ⟨a, hax, ha⟩, ⟨⟨_, mem_non_zero_divisors_of_ne_zero ha⟩, hax x ⟨1, one_smul _ _⟩⟩⟩ | |
end | |
/-- A module over a domain has `no_zero_smul_divisors` iff its torsion submodule is trivial. -/ | |
lemma no_zero_smul_divisors_iff_torsion_eq_bot : | |
no_zero_smul_divisors R M ↔ torsion R M = ⊥ := | |
begin | |
split; intro h, | |
{ haveI : no_zero_smul_divisors R M := h, | |
rw eq_bot_iff, rintro x ⟨a, hax⟩, | |
change (a : R) • x = 0 at hax, | |
cases eq_zero_or_eq_zero_of_smul_eq_zero hax with h0 h0, | |
{ exfalso, exact non_zero_divisors.coe_ne_zero a h0 }, { exact h0 } }, | |
{ exact { eq_zero_or_eq_zero_of_smul_eq_zero := λ a x hax, begin | |
by_cases ha : a = 0, | |
{ left, exact ha }, | |
{ right, rw [← mem_bot _, ← h], | |
exact ⟨⟨a, mem_non_zero_divisors_of_ne_zero ha⟩, hax⟩ } | |
end } } | |
end | |
end torsion | |
namespace quotient_torsion | |
variables [comm_ring R] [add_comm_group M] [module R M] | |
/-- Quotienting by the torsion submodule gives a torsion-free module. -/ | |
@[simp] lemma torsion_eq_bot : torsion R (M ⧸ torsion R M) = ⊥ := | |
eq_bot_iff.mpr $ λ z, quotient.induction_on' z $ λ x ⟨a, hax⟩, | |
begin | |
rw [quotient.mk'_eq_mk, ← quotient.mk_smul, quotient.mk_eq_zero] at hax, | |
rw [mem_bot, quotient.mk'_eq_mk, quotient.mk_eq_zero], | |
cases hax with b h, | |
exact ⟨b * a, (mul_smul _ _ _).trans h⟩ | |
end | |
instance no_zero_smul_divisors [is_domain R] : no_zero_smul_divisors R (M ⧸ torsion R M) := | |
no_zero_smul_divisors_iff_torsion_eq_bot.mpr torsion_eq_bot | |
end quotient_torsion | |
section p_torsion | |
open module | |
section | |
variables [monoid R] [add_comm_monoid M] [distrib_mul_action R M] | |
lemma is_torsion'_powers_iff (p : R) : | |
is_torsion' M (submonoid.powers p) ↔ ∀ x : M, ∃ n : ℕ, p ^ n • x = 0 := | |
⟨λ h x, let ⟨⟨a, ⟨n, rfl⟩⟩, hx⟩ := @h x in ⟨n, hx⟩, | |
λ h x, let ⟨n, hn⟩ := h x in ⟨⟨_, ⟨n, rfl⟩⟩, hn⟩⟩ | |
/--In a `p ^ ∞`-torsion module (that is, a module where all elements are cancelled by scalar | |
multiplication by some power of `p`), the smallest `n` such that `p ^ n • x = 0`.-/ | |
def p_order {p : R} (hM : is_torsion' M $ submonoid.powers p) (x : M) | |
[Π n : ℕ, decidable (p ^ n • x = 0)] := | |
nat.find $ (is_torsion'_powers_iff p).mp hM x | |
@[simp] lemma pow_p_order_smul {p : R} (hM : is_torsion' M $ submonoid.powers p) (x : M) | |
[Π n : ℕ, decidable (p ^ n • x = 0)] : p ^ p_order hM x • x = 0 := | |
nat.find_spec $ (is_torsion'_powers_iff p).mp hM x | |
end | |
variables [comm_semiring R] [add_comm_monoid M] [module R M] [Π x : M, decidable (x = 0)] | |
lemma exists_is_torsion_by {p : R} (hM : is_torsion' M $ submonoid.powers p) | |
(d : ℕ) (hd : d ≠ 0) (s : fin d → M) (hs : span R (set.range s) = ⊤) : | |
∃ j : fin d, module.is_torsion_by R M (p ^ p_order hM (s j)) := | |
begin | |
let oj := list.argmax (λ i, p_order hM $ s i) (list.fin_range d), | |
have hoj : oj.is_some := (option.ne_none_iff_is_some.mp $ | |
λ eq_none, hd $ list.fin_range_eq_nil.mp $ list.argmax_eq_none.mp eq_none), | |
use option.get hoj, | |
rw [is_torsion_by_iff_torsion_by_eq_top, eq_top_iff, ← hs, submodule.span_le, | |
set.range_subset_iff], intro i, change _ • _ = _, | |
have : p_order hM (s i) ≤ p_order hM (s $ option.get hoj) := | |
list.le_of_mem_argmax (list.mem_fin_range i) (option.get_mem hoj), | |
rw [← nat.sub_add_cancel this, pow_add, mul_smul, pow_p_order_smul, smul_zero] | |
end | |
end p_torsion | |
end submodule | |
namespace ideal.quotient | |
open submodule | |
lemma torsion_by_eq_span_singleton {R : Type*} [comm_ring R] (a b : R) (ha : a ∈ R⁰) : | |
torsion_by R (R ⧸ R ∙ a * b) a = R ∙ (mk _ b) := | |
begin | |
ext x, rw [mem_torsion_by_iff, mem_span_singleton], | |
obtain ⟨x, rfl⟩ := mk_surjective x, split; intro h, | |
{ rw [← mk_eq_mk, ← quotient.mk_smul, quotient.mk_eq_zero, mem_span_singleton] at h, | |
obtain ⟨c, h⟩ := h, rw [smul_eq_mul, smul_eq_mul, mul_comm, mul_assoc, | |
mul_cancel_left_mem_non_zero_divisor ha, mul_comm] at h, | |
use c, rw [← h, ← mk_eq_mk, ← quotient.mk_smul, smul_eq_mul, mk_eq_mk] }, | |
{ obtain ⟨c, h⟩ := h, | |
rw [← h, smul_comm, ← mk_eq_mk, ← quotient.mk_smul, | |
(quotient.mk_eq_zero _).mpr $ mem_span_singleton_self _, smul_zero] } | |
end | |
end ideal.quotient | |
namespace add_monoid | |
theorem is_torsion_iff_is_torsion_nat [add_comm_monoid M] : | |
add_monoid.is_torsion M ↔ module.is_torsion ℕ M := | |
begin | |
refine ⟨λ h x, _, λ h x, _⟩, | |
{ obtain ⟨n, h0, hn⟩ := (is_of_fin_add_order_iff_nsmul_eq_zero x).mp (h x), | |
exact ⟨⟨n, mem_non_zero_divisors_of_ne_zero $ ne_of_gt h0⟩, hn⟩ }, | |
{ rw is_of_fin_add_order_iff_nsmul_eq_zero, | |
obtain ⟨n, hn⟩ := @h x, | |
refine ⟨n, nat.pos_of_ne_zero (non_zero_divisors.coe_ne_zero _), hn⟩ } | |
end | |
theorem is_torsion_iff_is_torsion_int [add_comm_group M] : | |
add_monoid.is_torsion M ↔ module.is_torsion ℤ M := | |
begin | |
refine ⟨λ h x, _, λ h x, _⟩, | |
{ obtain ⟨n, h0, hn⟩ := (is_of_fin_add_order_iff_nsmul_eq_zero x).mp (h x), | |
exact ⟨⟨n, mem_non_zero_divisors_of_ne_zero $ ne_of_gt $ int.coe_nat_pos.mpr h0⟩, | |
(coe_nat_zsmul _ _).trans hn⟩ }, | |
{ rw is_of_fin_add_order_iff_nsmul_eq_zero, | |
obtain ⟨n, hn⟩ := @h x, | |
exact exists_nsmul_eq_zero_of_zsmul_eq_zero (non_zero_divisors.coe_ne_zero n) hn } | |
end | |
end add_monoid | |